CHE EPHEMEROPTERA (MAYELIES) OF SOUTH AUSTRALA

by
P. J. SUTER ${ }^{1}$
Department of Zoology, University of Adelaide, Adelaide, South Australia 5000

(Manuscript accepted 2 July 1985)

AB. TRACT
sufter. P. .1. 1986. The Ephomeroptera (Maytien) ol South Ansmalia. Rec. S. Aus. Mus, 19([7): 339-397.

In a study of the Ephemeroptera of South Australia, thirteen species have been recognised. All species have been described from both adult and nymphal material and keys enabling their identification are included, Five new species have been recognised, Atalophlebia auralus sp. nov., Nousia pilosa sp, nov, Ulmerophlebia pipinna sp, nov., Cloeot paradieniensis sp. nov, and Centroptilum elongatum sp. nov.; and one species transferred from each genus Atalophlebia and Atalonella to Nousia. (Nousia inconspicua (Eaton) comb, hov, and Nousia fuscula Tillyard comb, nov.), The lirst associated nymphal descriptions of five previously described species Nousia inconspicua (Earon), N fuscula (Tillyard), Baetis soror Ulmer, Cloeon fluviatile Ulmer, and Tasmanocoenis tillyordi (Lestage) are also made. Two species have been redescribed from South Australian material; Atalophlebia australis (Walker), and A. australasica (Pictet) and one species of Tasmanophlehia is deseribed but not formally named.

INTRODUCTION

The first species of mayfly in South Australia was recorded by Eaton in 1871 when Leptophlebia intonspicua was described from Adelaidc. In subsequent papers 1883-1888 Eaton placed this species into the new genus Atalophletic, Since that date only two other records of the Ephemeroptera in South Australia have been made; Harker (1954) recorded Alalophlebia australasica from Tillyard's 1934 collection near Mount Gambier; and Timms (1974) recorded a "Caenis sp." in Valley Lakc, Mount Gambier, and L. Edward near Millicent. Both Williams (1968) and Rick (1970) acknowledge the presence of mayflies in South Australia, but neither mention any specific families or genera.

With the exeeption of the species described by Eaton (1871) the other records of Ephemeroptera are from the wet South East of South Ausiralia. It appears that because South Australia is the driest State in Australia, the existence of freshwater in regions other than the South East had been ignored, leaving a large gap in

[^0]our knowledge of Ausiralian freshwater juvertebrates, and zoogeographical relationships of these animals.

Preliminary collections from the Fleurieu Peninsula, the Mount Lofty Ranges and the Flinders Ranges showed that mayflies were abundant in all permanent freshwater streams, waterholes and in many dams and reservoirs. Further collections from the freshwater habitats in South Australia bave led to the recognition of 13 species of Ephemeroptera, all but one of which have nymph and adult associations confirmed in the laboratory or in the field.

All 13 species have been described from both adult and nymphal material and keys to their identification are included. Five new species have been recognised, Atalophlebia auratus, Nousia pilosa, Ulmerophlebia pipinna, Cloean paradieniensis and Centroplilum elongatum; one species transferred from each genus Atalophlebia and Atalonella to Nousia (Nousia inconspicua (Eaton) comb. nov. and Nousia fuscula (Tillyard) comb. nov.) and the first associated nymphal descriptions of five previously described species; Nousia inconspicua (Eaton), N, fuscuta (Tillyard), Baetis soror Ulmer, Cloeon fluviatile Ulmer and Tasmanocoenis tillyardi (Lestage) made. Enlarged descriptions of Atalophlebia australis (Walker), and A. australasica (Pictet) are also given. A single species of Tasmanophlebia was also recorded and is described, but since a revision of the Siphlonuridae is being prepared by Dr I, C. Campbell material has been sent to him to include in his more detailed studies of this group.

MATERIALS AND METHODS

Collection of nymphs was by dip-ret with mesh-pore size of $500 \mu \mathrm{~m}$, or by hand of nymphs clinging to the under-surface of rocks or bark in streams. Adults were collected by beating the vegetation along river banks with an insect net, or by sweeping the net through a swarm. Specimens were preserved in 70% ethyl alcohol with 5% glycerol.
Specimens for study were dissected under a Wild MS stereoscopic microscope, and the appendages (legs and wings of adults; legs, mouth-parts and gills in nymphs') were mounted on glass slides using "Euparal" or Polyvinyl laeto-phenol mounting media. The sterna, and nymphal abdominal terga, were prepared using the techniques of Tsui and Peters (1972, 1975), and the
nymphal tentoria were studied by the methods given by Hudson (1951).

Genitalia and eggs were either mounted on slides or prepared for the Scanning Electron Microscope (S.E.M.) using eritical-point drying which eliminated both shrinkage and distortion. They were then mounted and coated with $\mathrm{Au} / \mathrm{Pd}$ and examined using an E,T.E,C, Autoscan with an operating voltage of 5,10 , or 20 KV .

Illustrations of wings and body colour-patterns were made using a Wild M3 or M5 stereoscopic microscope with an attached drawing head. Legs, mouthparts, gills and bight magnification ($>100 \times$) illustrations were drawn using a Wild çompound microscope and camera lucida.

Wing venation terminology is based on Tillyard's (1932) scheme, and as illustrated in Figures la and 16 used by Peters \& Edmunds $(1964,1970,1972)$ and Edmunds, Jensen \& Berner (1976). Each segment of the fore, middle and hind legs of the nymph and male imago is compared to the length of the fetmur, and is expressed as a ratio. The absolute length of the femur is given last in parenthesis.

In figures of the labium the method used by Pcters \& Edmunds (1964, 1970, 1972) is followed, with the ventral surface shown on the right hand side of the illustration, and the dorsal surface on the left. Comparative measurements of the segments of the labial palpi and maxillary palpi are expressed as ratios, compared with the proximal segment length, which is given in parenthesis. All measurements are given in millimetres.

KEYS TO THE SOUTH AUSTRALIAN EPHEMEROPTERA

The following keys will serve to distinguish the male imago and mature nymphs of the species of Ephemeroptera recorded in South Australia. Figures are included with each couplet to give illustrated examples of the key characters, although occasionally these are not required (e.g. "terminal filament present" as compared with "terminal filament absent").

The key to the imagos is primarily for malc specimens because species identification of the female imagos is often very difficult as external morphological characteristics of the female show generic, rather than specific affinities, Only direct association with nymphs can allow accurate identification of females, using external characters. However, with the limited South Ausiralian mayfly fauna, the females have also been included in the key and can be distinguished by external morpholagical characters in all genera with the exception of Nousia. The external characteristics are useful to distinguish this genus, but species separation is difficult without direct nymphal association, or a study of the morphology of feritized eggs. Identification of subimagos is not as successful, Generic segregating characters are present in subimagos, and generic identification can be made using the imago key.

For spectifidentification it is necessary to refer to the subimago chatacterisifes listed in the description of cach species.

KEY TO SOUTH AUSTRALIAN ADULT EPHEMEROPTERA

1a Hind wings comparatively large, about hatf as long as the fore wing (Figs 28a, b). Male penes long and tuthular (Figs 30a, b) Siphlonuridae Only one represenialive in South Australia; Tasmanophlebin $s p$.
1b Hird wings small or entirely absent 2
2a(1) Fore wings with mary cross-veins, hind wings small, also with many cross-veins (Fies ta, $b ; 3 \mathrm{a}, \mathrm{b} ; 5 \mathrm{a}, \mathrm{b}_{\mathrm{i}}$ 8a, b; 10a, b; 12a, b, c; 17a, b)

Leprophlebridac 3
26 Fore wings with few stoss-veins, clear open appearance, hind wings present or absent, if present reduced, with cross-veins few or absent (Figs 2la, tr; $23 \mathrm{a}, \mathrm{b} ; 25 \mathrm{a} ; 3 \mathrm{Ja}, \mathrm{g})$.
3a(2) Tarsal claws of each pair similar, elongate, siender, hooked distally (Figs $1 \mathrm{~g} ; 3 \mathrm{~g} ; 5 \mathrm{~h} ; 8 \mathrm{~g} ; 10 \mathrm{~g} ; 12 \mathrm{f}$); fore wings < $3.5 \times$ longer than wide (Figs la; 3a; Sa; 8a; 10: 12 a). .
36 Tassal claws of each pair dissimitar, one elongate, slender, hooked dislally, one blunt with a distal looth, club shaped (Fig. 17h); fore wing. >3.5; longer than wide. Malo gentitalia (Figs 17c; 19a, b)

Ulmerophicoia Only one species in South Australia: U. pipinna sp. noy.
$4 \mathrm{a}(3)$ Large species, body length $>8 \mathrm{~mm}$; fore wing 7-13 mm ; Sc of hind wing reaches wing margin at $9 / 10$ wing length (Figs 1b; 3b; 5b) ... Atatuphtehia 5
4b Small species, body length $<8 \mathrm{~mm}$; fore wing 5.8 .5 mm ; Sc of find wing reaches wing margin at $3 / 4$ of wing lenglh (Figs 8b; 10b; 12b) Nousia 7
$50(4)$ Males and lemales with terminal filament; body colour yellow-brown (orange); female with ninth abdominal sternile deeply incised (Figs le, 5i) , 6
5b Males without terrininal filament (present in females): body colour black. Male genitalia (Figs 3c, d; 7e, d); female with ninth abdominal sternite with shatlow incision (Fig. 3e) Atalophlebia cousiratasica
fa(5) Fore wings with darker pterostigmatie region, erossveins of costal and subcostal spaces shaded with black, fiind wings and rest of fore wings hyaline (Fig. 14, b); body yellow with black thorax. Apices of penes widely scparated and divergent (Fies Ic, d; 7a, b) A. ausimalis

6b Fore wings inged entirely with yellow, pterostigmatic region darker than rest of wing: hind wing greybrown, darker than fore wing (Fig. 5a, b). Apices of penes convergent (Figs 5c, d; 7c, 1),.
....................... A. curatus sp novs

Ta(4) Two halves of penes disfinctly separated forming a U-shape (Figs 10e, d; 15e, d); with a snall triangular spine on inner margin (visible using transmitted light, Fig. 10c) Nousia fuscula
7b Two halves of penes held ctose together, without spine … 8
8 (7) Penes with two ventral !obes near apex (Fis 8 8: 15 a, b) N. inconspicua comb, тen 8b Penes withour ventral lobes (Fige 12 d. . 5 150, f) ..

9a(2) Males with turbinate eyes (females withoul dorsal compound eves); marginal intercalaries short, developed between the ends of the main veins (Figs 21a; 23a; 25a, g); hind wings present or absent .. Baedidae 10
9h Males and females with small lateral eyes, dorsal compound eyes absent; no margonal intercalaries present (Fig. 3la); hind wings abseni. Penes fused will rapical indentation, forceps strougly bowed (Figs 30c; 31d) tillyardi
1(9a(9) Hind wings presen II
106 Hind wings ahsent Cloeon 12
1 la(10) Marginal intercalaries of fore Wing paired (Fig. 2la). Male genitalia (Fig. 19c; 21d) Bactis Only bte species in South Nustralia: B. sofor
11t) Marginal intercataries of fore wing single (fig. 23a), Male genitalia (Figs 19d; 23d) Centroptilum Only one species in South Australia: C. elongatum sp . now.
12a(10) Males wilt hurbinate eyes, yellow; terminal segment of forceps triangular (Higs 191: 25i); females with costal and subcostal spaces al wings shaded red/brown; hody length $>7 \mathrm{~mm}$

Chocon parudiemensis sp nov.
126 Males with turbinate eyes, sepia; terminal segment of torceps small and globular (Fies 19e; 25d); Females with costal and subcostal spaces of winge opaque, milky; body length $<5 \mathrm{~mm}$
C. Iluviatile

KEY TO THE NYMPHS OF SOUTH AUSTRALIAN EPHEMEROPTERA

Ia Head prognathous; tail filaments with wherls of setac at apex of each segment, body dorso-ventrally Tlatened. Families Leptophlebiidaes Caenidac. 2
1b Head hypognathous, tail fitaments fringed laterally with long fine setae, boidy usually cylindrical, Families Baetidae; Siphlonuridae
2a(1) Seven pairs of gills inserted lateratly on abdomen, each gill conslsting of a pair of lamellae
2b Six pars of gills, Ist very small mono fitament, and enlarged to form an elytriform gill cover, remaining pairs beariug long tracheal filaments (Eigs 32b, c, d)

Caenidae: Tasimanocoenis Only one species in South Australia; T. tillyardi,
3a(2) Cill base broad with one apical tilament, lined with fine setue (Fig. 18 c), legs and body covered with long fine setae (Fig. 20) Ulmerophlebia Only one species in South Austratia: U, pipintia Sp. nov.
3b Gills tanceolate or liniear, with one apical filament (Figs 9e; 11e; 13c), apex with muluple tracheal filaments (Figs 2c;4c), body not covered with long Pine setar
4a(3) Gills lanceolate or linear, not branched at apex into tracheal filamems (Figs 9e: He: 13c). . Nousia 5
4b Gifls broad at apex, with each lamella subdivided into tracheal filaments (Figs 2c; 4c) Atalophlebia 7
Sa(4) Gills lanceolate (Figs 9e; 13c); proximal segment of labial palpi narrow, $2 \times$ longer than wide (Figs 9g; 13g),

6a(5) Dorsal abdominal marking with a brnad median light stripe (Fig, 14d); labrum rectangular, $2 \times$ wider than long (Fig. 9d); lemora with lew finc setae (Fig. 9a) N. inconspicua comb. now.

6b Dorsal abdominal marking with narrow light eegions on segntents $4-10$ (Fig .140); labrum almoss square 1.5 * wider than long (Fig. 13d): femora lined with numerous long fine setae (Fig. 13a)
N. pilosa sp. nov.

7a(4) Apex of gills with each lamella uifurcate (Eig. 2c) Atalophlebia australis
7b Apex of gills multifurcale with more than three tracheat filaments (Fig. 40)
8a(7) Ninth abdominal segment with only one backward poiming spinc (Fig. 14c); no dark markings on legs (Fig. (ad)
A. atratus sp. nop.

8b Ninth abdomimal segntent with two backward pointing spines (Fig. 14b); femur and tibia with broad bands of black (Fig. 4a) A. australasica
9a(J) Four pairs of gills present, first pair elytitorm, covering last three paiss. Postero-lateral margins of abdominal segments produced inw backward pointing spincs (Fig. 28g)

Siptilonuridae: Tusmanophlebia Only one species in South Austratia: Tasmanophlidita sp.
9b Seven pairs of gills present, posterolateral margins of abdominal segments rot produced into backward pointing spines Baelidate 10
10a(9) Gill lameltie doufic on abdominal segments i-6, single on 7th (Fies 26e; 27e); hind wing sheaths absent Cloean II
10t Gill lamellae single on abdominal segments 1-7 (Figs 21i; 24d); hind wing sheaths present

12
11 a(10) Paraproets with 27-30) spines (Fig. 27d); maxillary palpi with terminal spines on distal segment (Fig. 28f): without definite abdominal colour patteri. . Cloeon paradientensis sp. nov,
116. Paraprocts with 17-22 spines (Fig, 26d): maxillary palpi without terminal spines on distal segment (Fig. 2(ii); abdominal pattern as in Eig. 268...

```
C. Iluviarile
```

$12 a(10)$ Labrum wirl deep median V -shaped coneavity with a tooth on each side of the lateral margins of the concavity, near the apex (Fig. 24c); tarsal claws very long and slender (Fig. 24a),

Ceniroptilum elongatum sp. nov.
12b Labruin rounded, with shallow U-shaped concavily (Fig. 21j); tarsal claw short (Fig. 210) Baetis saror

FAMILY LEPTOPHLEBIIDAE

Peters and Edmunds (1964, 1970) recorded the systematic history of the family and listed characterizations based on Ethiopian and Eastern Homisphere material.

GENUS ATALOPHLEBLA Eaton 1881
Burmeister, 1839; 800 (In Baetis); Pictet, 1843; 189-19]
(In Baetis) B. ausiralasica; Walker, 1853: 538 (In Ephemera) F: austratis, 1853: 559-561 (In Baetis) B. australasica, B costalis; Eaton, 1871: 78-81 (In Leptophlebia); 1881: 193-194 (Type species A, australis); 1884; 83-91; Ulmer, 1908: 40-46; 1916; 2-17; 1919: 16-23; Needham \& Murphy, 1924; 34-36; Tillyard, 1926: 63-64; 1934: J-16; 1936: 30-49; Harker, 1950: 8-17; 1954:

243-252; 1957: 63-68; Kimmins, 1960; 294; Riek, 1970: 239; Tsui \& Peters, 1975; 542-544.

Type Species:' Atalophlebia uustralis (Walker).
Detailed characteristics of the genus are given in Suter (1980),

Ataloptilehia ausiralis (Walker) 1853

Ephemera austrulis Walker, 1853: 538; Leptophlebia australis Eaton, 1871: 78; Atalophlebia austrulis Eaton, 1881: 193-194; 1884; 86; Tillyard, 1934: 1-16.

This species was fully described by Tillyard (1934) in a study of the type species of Atalophlebia. Therefore much of the detailed description is unnecessary, but measurements and ratios have been included. A transparency of the genitalia of the lectotype designated by Tillyard (held in the British Museum of Natutal History) has been examined, but the actual specimen has not been seen, The following description is based on South Australian representatives, and ineludes measurements not recorded by Tillyard.
Male Imago

	\bar{x}	$S D$	n	Range
Body Length	10.69	1.38	14	$8.80-12,50$
Notal Length	3.65	0.39	15	$3.20-4.20$
Mesonotal Width	1.93	0.27	15	$1.52-2.28$
Pronotal Widith	1.50	0.16	5	$1.24-1.64$
Fore Wing Length	11.84	0.87	9	$9.92-12.48$
Hind Wing Length	3.45	0.37	10	$2.52-3.72$
Cerci Length	28.00	2.86	5	$25,00-32.60$
Terminal Filament Length	23.35	1.40	4	$22.00-25.00$

Thorax: Fore leg femur length $1.18 \times$ middle leg Fernur length, and $1.07 \times$ hind leg femur length. Ratios of leg segments (Note; in middle and hind legs, second ratio is tibia $+T_{1}$ length: lemur length): fore leg $1.00: 1.34: 0.41=0.51: 0.44: 0.34: 0.21 \quad(2.34 \mathrm{~mm})$; middle log $1.00: 1.00:-: 0.11: 0.10: 0.09: 0.19$ (1.99 mm); hind leg $1.00: 1.04:-: 0,10: 0,09 ; 0.08$; 0,17 (2.18 mm). Mesustenuurt: basisternum length 1.13 \times width, $0.62 \times$ furcasternum length, furcasernum length $0,77 \times$ width, posterior margin with a short triangular indentation, lateral matgins of furcasternum strongly selerotized and dark brown,

Wings: Fore wing $2.75 \times$ longer than wide. Hind Wing (Fig. ib) $1.62 \times$ longer than wide.

Abdomen: yellow with dark brown markings dorsally (Fig, 1h). Segments 8, 9, 10 yellow-brown, ventrally yellow with light brown markinge (Fig. 1i),

Genitalia: (Figs 1c; d) foreeps yellow-hrown. Penes broad, with a V-shaped median indentation, ventral sperm duct openings obvious (Figs 7a, b)

Mamre Male Nymph (Fig. 14a)

	\tilde{x}	$S D$	n	Range
Head Width	2.22	0.066	7	$2.12-2.28$
Notal Length	3.21	0.07	7	$3.12-3.34$
Pronoral Widh	2.14	0.18	7	$1.80-2.30$

Mesonotal Width	2.42	0.099	7	$2.24-2.48$
Cerí Length	16.03	0.86	4	$15.05-17.10$
Terminal Filament Length	13.54	0.96	5	$12.31-14,54$

Thorax: Pronotum widh $0.96 \times$ head width. Mesonotum L,09 \times wider than head, Legs (Fig. 2a) yellow-brown with brown bands on each segment. Tarsal claws short and curved with 20-25 peg-like ventral denticles (Fig. 2b). Femora of lore and middle leg equal in length, hind leg longest, $1,12 \times$ fore femur length. Ratios of leg segments: fore leg $1.00: 1.05: 0.53$ $(1.88 \mathrm{~mm})$; middle leg $1.00 ; 0.97: 0.43(1.90 \mathrm{~mm})$; hind leg $1.00 ; 1.02: 0.43(2.10 \mathrm{~mm})$. Femur length to width ratios: fore leg 3.16, middle leg 3.26, hind leg 3.54. Sternum: prosternum width equal to anterior width of mesobasisternum. Mesosternum: basisternum length equal to or slighty longer than furcasternum, sternacostal suture present. Metasternum; basisternum 4-5 x wider than long, widih slightly less than mesofurcasternum.
Abdomen: (Fig. 14a) posterior margins of tergites with large singular spines, with smaller spines basally. Cerci well deteloped, longer than terminal filament. Gills, seven pairs, each consisting of a pair of lamellae with three tracheal filaments per lamella (Fig, 2c),

Mouthparts: labrum (Fig. 2d) $2.78 \times$ wider than long, mid-anterior indented, rugose, with 4-5 rounded tubercles (Fig, 2e). Left mandible (Fig. 2h); outer incisors with four teeth, inner with three, prostheca robust (Fig, 2i), Right mandible (Fig. 2j); outer incisors with three apical teeth, with five serrations on inner margin of third tooth, inner incisors with two teeth, inner lateral margin with up to five spines, prostheca long and slender with four spines along length (Fig. 2k). Hypopharynx (Fig, 2l). Maxillae (Fjg. 21): proximal segment of palp $2.24 *$ longer than wide, segment ratios; $1.00: 1.22 ; 0,66(0.32 \mathrm{~mm})$. Labium (Fig. 2 g): proximal segment of papl $1.81 \times$ longet than wide, segment ratios; $1.00: 0.80: 0.60(0.37 \mathrm{~mm})$.

Female Imago

Colour simidar to male, ninth abdominal sternite with deeply incised posterior margin (Fig, 1c), seventh sternite produced posteriorly, slightly hooked when viewed Jaterally (Fig. 1f). Fore legs shorter than in male. Sternum broader than male, mesobasisternum length $0.85 \times$ width, mesofurcasternum $0.65 \times$ width.

Subimago

Black to dark brown, wings shaded grey with hyaline lambda (λ) marking complete (see Tillyard, 1934).

Female Nymph

Similar to but larger than male, lacking dorsai compound eyes.

Diagnostic Characteristics

1. Gentitalia ol male imago (Figs 1c, d and Figs 7a, b).
2. Distinctive yellow-brown (orange) colour described by Walker (1853) and Tillyard (1934) as "red", and "rufopiceous above; venter dull light burnt-umber. approaching rusty brown" by Eaton (1884).
3. Distinctive pattern of subimago.
4. Nymphal gills with trifurcate filaments (Fig, 2c).
5. Form and shape of mandibles, incisors and prosthecae (Figs 2h, i, j, k).

History and Discussion

In 1853 Walker briefly described Ephemeru australis from Dr Hooker's 1842 collection from Tasmania. This species was later placed in the genus Leplophlehia (Eaton 1871) and subsequently (Earon 1881) was designated the genolype for the new genus Atalophtebia. Walker referred to the "red" abdomen, and Eaton relerred to rufo-piceous coloration, "an umusual character for this genus" (Tillyard 1934), Tillyard's extensive descriptions of the male imago, subimago and nymph of A. austrulis enable relatively easy recognition of all stages of this species, but the coloration in the living material differs from that of dry pinned specimens. Newly caught and alcoholpreserved adults have a distinctive orange colour, not red, as is the ease in dry specimens.

Material Examined

SOUTII AUSTRALIA. South East: Brown Lake, Bakers Range Drain, Eastern Division Diversion Drain, Mt. Hope Drain, Reedy Creek Drain, Sutherlands Drain and Valley Lake. Mt, Lofty Runges; Marne R., Para R., Torrens R. Southern Flinders Ranges: Back Creek, Iulia Creek, Rocky River.
VICTORIA, Clunes, Tarango Dam, Neerin, Lake west of Harrow, L. Haltah, 1. Wendouree, Ballarat, Konongwootong Reservoir, Rocklands Reservoir, Surrey R.
TASMANLA. Break O'Day R, Lagoon of Islands, 1 . Leake.

Atalophlebia australasica (Pictet) 1843

Bueris ausirulasica Pictel, 1843: L89-190; Wallier, 1853: 559: Leplophlebia australasica Eaton, 1871: 78-79; Alalophlebiu ausiratusicu Eaton, 1884: 86-87; Ulmer, 1916: 2-3; Harker. 1950: 28; 1954: 248-249.

Aale limago

	\bar{x}	SD	11	Runge
Body Ieneti	10.10	0.86	26	$8.60-11.46$
Notal Lengit	3.13	0.24	8	$2.84-3.60$
Eronotal Wiath	1,09	0, 00	8	$2.84-3.60$
Mesonotal Width	1,54	0.13	8	1.44. 1.80
Fore Wing Lengif	10.33	1.10	18	9.23-12.83
Hind Wing lengly	3.022	0.41	18	$2.40-3.96$
Cevel Lengr)	28.20	2.72	3	24.00-31.00

Head: dark brown to black. Dorsal compound eyes dark red-grey, lateral eyes dark grey.

Thorax: shiny black. Pronotum narrower than head. Mcsonotum without markings. Legs: fore legs black with two darker bands on femur, one mid-, one distally, T_{1} partially fused to tibia. Middle and hind legs shorter than fore leg, light yellow-brown with two black bands on femora, one mid, one distal, libiae with one proximal band, T_{1} fused to libia with joint apparent. Fore leg femur length $1.20 \times$ midde leg femur length, and $1.06 \times$ hind leg femur length. Ratios of leg segments: fore leg $1.00: 1.39: 0.13: 0.53=0.48=0.39$: $0.20(2.26 \mathrm{~mm})$; middle leg $1.00: 0.93 ; 0.08: 0.11=$ $0.09: 0.08: 0.16(1.88 \mathrm{~mm}) ;$ hind leg $1.00: 1.01: 0.08:$ $0.09: 0.06: 0.07: 0.15(2.13 \mathrm{~mm})$. Mesostermm: basisternum length 1.12 \& width, $0,66 \times$ Curcasternum length, tateral margins anteriorly expanded, posterior margin truncated, furcaslernum length $0.71 \times$ widu. posterior margin with a triangular indentation.

Wings: fore twing (Fig. 3a) 2.77×1 nuger than wide. pterostigmal region brown, costal and subcostal crossveins broadly shaded with black, bulla in Se surrounded by black marking. Hind wing (Fig. 3b) 1.60 * longer than wide, costal space with 1-3 proximal and 6-10 distal cross-veins.

Abdomen: light brown with darker markings dorsally (Fig. 3h) ventrally grey with light patehes on segments 3-9 (Fig. 3i). Cerei stout, black-brown with the last $3-5$ mor buff, lerminal filament absent

Genitutio: (Figs 3c, d): penes broad at base, with concave lateral margins and bulbous distal region. fused, centrally, giving a triangular apex (Figs 76, d).

Mature Male Numpit (Fig, 14b)

	\bar{x}	SD	π	Range
Head Width	2.38	0.11	9	$2,28-2.60$
Notal Length	3.41	0.41	9	$3.60-4.32$
Pronotal Width	$2,+4$	0.15	9	$2.28-2.76$
Mesonotal Width	2.70	0.22	9	$2.48-3.12$
Cerci Length	12.74	-	2	$12.14-13.34$
Terminal Filament 1ength	12.82	0.35	3	$12.42-13.40$

Head: dark brown-black. Dorsal compound eyes red-black, lateral eyes black. Antennac yellow-brown, longer than head is wide.

Thorax: dark browa with pale mid-fongitudinal tine. Pronotum wider or narrower than head (geographically variable). Mesonotum $1.1 t$: wider than head. Legs ycllow brown with black bands on each segment, Femora with two bands (one mid-, one distal), tibiae with two bands (one proximal, one distal), tarsi with a broad band covering proximal half (1-ig. 4a). Fore femur $1.05 \times$ longer than middle femur, hind femur 1.15 longer than fore femur. Tarsal claws short, curved, with 15-20 peg like denticles (Fig, 4b). Ratios of leg segments: Fore leg $1.00: 1.02: 0.50(2.24 \mathrm{~mm}) ;$ middle leg $1.00: 0.98: 0.37(2.21 \mathrm{~mm})$; hind leg 1.00 $1.06: 0.36(2.42 \mathrm{~mm})$. Pemur length to width ratios:
fore leg 3.18, middle leg 3.42, hind leg 3,61 , Mesosternum: basisternum length equal to Curcasternum length, sternacostal suture present. Metastermum: basisternum 3.7-5 * wider than long, width equal to width of mesofureasternum.

Abdomen:- brown, patterned (Fig. 14b). lateral flange of segment 9 with two spines, outer largest, inner rounded; posterior margin of tergum with spines arranged singularly. Cerei well developed, terminal filament longer than lateral filaments. Gills: multifurcate (Fig. 4c), each gill consisting of a pair of lamellae with 8 -20 tracheal filaments per lamella.

Mouthparts; labrum (Fig, 4d) $3-41 \times$ wider fhan long, mid anterior margin indented, rugose (Fig, 4c). Left mandible (Fig. 4h): outer incisors with three large teeth, inner with three large teeth, prosiheca robust, crenulated wifh $6-8$ blunt teeth (Fig. 4i). Right mandible (Fig. 4j): outer incisors with five teeth, inner incisors with two teeth and four small spines on inner lateral margir, prostheca, slender, with crenulations on outer margin of $2-4$ tubercles, distally with a long spine (Fig, 4k). Hypopharynx (Fig, 4f), Maxillae (Fig. 41): proximal segment of palp $2.80 \times$ longer than wide, segment ratios, $1.00 \div 1.19 \div 0.69(0.41 \mathrm{~mm})$. Labium (Fig. 4 g): proximal segment of palp long and broad, $1.97 \times$ longer than wide, segment ratios $1.00: 0.67$; $0.68(0,42 \mathrm{~mm})$.

Female Imago

Larger than male, similar colour and dorsal matkings, 9 th abdominal sternite with shallow incision on posterior margin, 7th stermite produced posteriorly forming a bulbous projoction (Figs 3e, f). Fore legs shorter than in male, sternum and thorax broader than male, mesobasisternum length of $0.81 \times$ width, 0.63 \times fureasternum length, furcasternum lengit 0.61 \& width. Terminal filament present.

Subirago

Dull, black-brown, wings uniformly shaded grey, no "lambda" patcern, terminal filament present.

Diagnostic Churacieristics

1. Genitalia of male imago (Figs 3c, d; 7c, d).
2. Lack of terminal filament in adult thate.
3. Subimago with uniform grey wings.
4. Nymphs with multifurcate tracheal gill filaments (Fig. 4c).
5. 9th abdominal segment with two spines on the posterolateral margin.
6. Form and shape of mandibles, incisors and prosthecae (Figs 4h-k).

Bistory und Discussion

Atalophlebia australasica, originally deseribed by Picter (1843), has been redescribed by Eaton (1871,
1884), by Utmer (1916) and Harker (1954). The description given by Pictet was not extensive enough to enatule recognition of this species as more Australian species were described. Eaton (1871, 1884) redescribed this species and illustrated the wings and genitatia. Ulmer (1916) designated materjal from northern Queensland as A. australasica, and deseribed the male and temate imagos, and the subimago. Ulmer noted differences in the venation of the hind wing of these specimens when compared with Eaton's (1884) illustration, but did not comment on the apparent differences in the gentalia as illustrated by Eaton. Harker (1950) recorded that Ulmer (1919) had placed A. austratusica as a synonym of A. costatis (Butmeister). In 1954, Harker noted, after examining material in the British Museum, that A, australasica as designated by Eaton was distinctly different from A. costalis as determined by Tillyard, and redescribed all stages of the species.

Although the male imago description is of the holotype (as inferred by the statement "fore legs are missing in holotype and paratypes"), Harker included a record of a well-developed terminal filament. Pictet's (1843) description ineluded only one caudal filament measurement, consistent with the accompanying illustration, and of descriptions of species lacking the terminal filament. Eaton $(1871,1884)$ also included only one measurement. Ulmer (1916) recorded only the lateral cerci "Die Schwanzborsten (2 beimo') sind schwarzbraun . . " but recorded the presence of the terminal filament in the male subimago. Harker (1954) also noted that material examined from Mt Gambier (from Tillyard's 1934 collection) was consistent with her recognition of this species. Adult males of A. australasica from south-east Sonth Australia and the Fleuricu Peninsula lack the terminal filament, consistent with the rype description. Harker's record mentions no variability of expression of the terminal filament (as described for A. australis by Tillyard 1934), Therefore, since subsequent collections, as well as the rype material all lack this filament, its presence as indicated by Harker must be suspect.

A comparison of Figs 3 c , and 7 c , with the illustration of the A. australasica genitalia by Harker (1954) shows little resemblance. The South Australian material of this species, examined in this study, was initially considered different from previously described species. However, a comparison of an air-dried specimen and a critical-point dried specimen revealed two different penes characteristics. The air-dried specimen closely resembles the illustration presented by Harker, from a dry, pinned preparation. The lateral lobes of air-dried specimens curl in towards the mid-line, producing a long narrow structure. The eritical-point dried specimens represent more closely the living, or alcoholpreserved, characteristics of the genitalia, with the lateral lobes of the penes maimtaining their lateral position.

Material Examined

SOUTH AUSTRALIA. South East: Cress Ck, Deep Ck, Eight Mile Ck, Hitchcock Drain, Jerusalem Ck. Mt. Lofty Ranges: Black fellow Ck, Brownhill Ck, Bull Ck, Cudlee Ck, Currency Ck, Dam al Carey's Gully, Dam at Ashton, Deep Ck, First Ck, Fourth Ck, Little Para R., Morialta Ck, Onkaparinga R., Stuit R., Torrens R., Wakefield R. Fleurieu Peninsula: Carrickalinga Ck , Coolawang Ck , The Deep Ck , (Delamere), Finnis R., Gold Digging Swamp, Hindmarsh R., Imman R., Kangarilla Ck, Myponga Ck, No Where Else Ck, Tookayerta Ck, Yankalilla R. Kangaroo Island; Breakneck R,, De Mole R, Middle R., Rocky R., Soutl West R.

VICTORIA. Grawford R., Eumarella R,, Fitzroy R, Glenelg R., Shaw R.

Atalophlehia auratus sp , nov.	
Holotype Male Imago	
Body Length	7.95 mm
Notal Lengit	2.60 mm
Pronotal Width	1.04 mm
Mesonoral Width	1.27 mm
Fore Wing Length	7.44 mm
Hind Wing Length	2.23 mm
Cerci Length	19.67 mm
Terminal Filament Length	15.57 mm

Genceal colour yellow-brown, fore wings yellow, hind wings grey.

Head: dark brown. Antennae short, basal segment 0.12 mm long, $1.5 \times$ longer than wide, 2 nd segment 0.1 mm long, $2.5 \times$ longer than wide, flagellum 0.24 mm long. Dorsal compound eyes pink-brown lateral eyes dark grey, Ocelli dark brown laterally, white anteriorly.

Thorax: shiny black. Pronotum narrower than head, Legs: fore legs long, femur and tibia dark brown, tarsal segments dark brown, no banding on any segment, T_{1} partially fused to tibia. Middle and hind legs shorter, light brown without banding, larsal segments $1-4$ with distal spine, T_{1} fused to tibia, join visible. Fore leg femur length $1.03 \times$ middle leg femur length, and 0.95 x find leg femur length. Ratios of leg segments: fore leg $1.00: 1.14: 0.09: 0.40: 0.40: 0.28: 0.19$ $(1.84 \mathrm{~mm})$; middle leg $1.00: 0.77:-: 0.10: 0.08: 0.16$ $(1.78 \mathrm{~mm})$; hind $\operatorname{leg} 1.00 \div 0,98:-0,08: 0,10 \div 0.07:$ 0.17 (1.94 mm). Steraum dark black-brown, Prosternum triangular, fonger than wide. Mesosternum; basisternum length $1.17 \times$ widtb, $0.78 \times$ furcasternum length $0.89 \times$ width, lateral margins of median longitudinal invagination divergent, posterior margin concave (Fig. Se).

Wings: fore wing (Fig, 5a) tinged throughout with yellow-brown, veins yellow-brown, pterostigma darker than rest of wing, cubital region shaded grey, length
$3.35 \times$ width, pterostigmatic cross-veins forked in left wing, simple, not forked in right wing, cross-veins present in proximal half of costal region. Hind wing (Fig. 5b) grey-brown, darker than fore wing, shaded completely, length $2.06 \times$ width, costal hump not large, costal space wirh nine cross-veins.
Abdomen yellow-brown dorsally, lighter yellow ventrally, dorsal tergites with dark brown-black markings baterally, and light mid-longitudinal stripe along all segments (Fig, 50), Sternites yellow-grey, with light red-brown circular markings on mid-line (Fig. 5g). Cerci long, terminal filaments well developed but not as long or robust as cemei.

Genitalia (Figs 5c, d; 7e, 0): foreeps with long proximal segment, broadest proximally, narrows half way along length, 2nd segment short, globular, distal segment longer, ovoid, rounded apically. Penes broad at base, tapering towards apex with apices held elose together, curving upwards in profile.

Mature Female Nymph (Figs 14e)

Body Length	$9,20 \mathrm{~mm}$
Head Width	2.03 mm
Notal Length	2.22 mm
Fronota! Width	1.90 mm
Mesonotal Width	2.19 mm
Cerci Lenglh	15.20 mm
Terminal Filantent Lengtt	14.66 mm

Gencral colour brown.
Head: brown. Lateral eyes black, oselli black. Tentorial body almost square, length $0.95 \times$ width. Antennae 4.8 mm long.

Thorax pronotum brown without markings, width $0.95 \times$ head width, 2 stout spine setae on anterior margin, no setae on latetal margin. Mesonotum brown, broad, width $1.08 \times$ head. Legs light brown without banding (Fig, 6a). Tarsal claws with 31-35 peg-like denticles (Fig. 6b), segment ratios: fore leg 1,$00 ; 0.98$; 0.49 (1.81 mm); middle leg $1.00: 0.96: 0.48$ $(1.81 \mathrm{~mm})$; tund leg $1.00: 0.96: 0.47(1.97 \mathrm{~mm})$. Femur length to width ratios; Fore log 3.77, middle leg 4.11, hind leg 4.48. Sternum: prosternum, length 0.73 * width, wider than anterior margin of mesosternum, Mesosternum: basisternum rectangular; width $0.68 \times$ length. Metasternum: basisternum short, width $5.7 \mathrm{~L} \times$ length.

Abdomen: brown dorsally with blaek patches on lateral flanges of segments $1-7$, segments $1-5$ otherwise brown without markings, segments $6,7,8,9$ with central light stripe, segment 10 light brown (Fig. 14c). Segment 9 with a single postero-lateral spine Cerci and terminal filament well developed, cerci longer. Gills: multifurcate, with numerous fine tracheal filaments on each lamella.

Mouthparts; labrum (Fig, 6c) Iength $0.40 \times$ width, anterior margin with median concavity lined with live rounded mbercles (Fig. 6d). Left mandible (Fig, 6g):
outer incisors with three apparent (four aetual) teeth; inner incisors with three teeth, prostheca robust with 8-10 pointed teeth on external margin (Fig. 11h). Right mandible (Fig. Gi): outer incisors with three teeth and a fourth shoulder-like ridge on third tooth, two small tubercles on mesal margin, inner incisors with three tecth, inner most with two small tubercles laterally, prostheca long, narrow with one small external spine and two terminal spines (Fig. 6i). Hypopharynx (Fig. 6e). Maxillae (Fig. 6k). Segment ratios of palp $1.00: 1.10: 0.67(0.30 \mathrm{~mm}$). Labium (Fig. 6f): proximal segment of palp broad, length $1.61 \times$ width, distal segment triangular, segment ratios $1.00: 0.80: 0.62$ (0.38 mm).

Female Imago

Reared in laboratory. Wing and body coloration resemble male, body robust, lilled with eges. Ninth abdominal segment with a deep ventral eleft (Fig. 5i); sternite of seventh abdominal segment slightly produced posteriorly (Fig. 5j).

Subimago

Similar to male imago, wing colour dull yellow-grey, without marking.

Male Nymph

Snaller than female, head with red-brown compound cyes.

Diagnostic Characteristics

1. Genitalia of male imago; shape of lorceps segments two and three and shape of penes (Figs 5c, f; 7c, f).
2. Wing coloration in both fore and hind wings.
3. Lack ol banding on legs of adults.
4. Multifurcate gills of nymphs.
5. Only one postero-lateral spinc on abdominal segment 9 .
6. Shape of mandibles, ineisors and prosthecae (Figs $6 \mathrm{~g}-\mathrm{j})$.
7. Lack of banding on legs of nymphs (Fig. 6a).
8. Dorsal colour pattern of nympli and adults (Fig. I4c; and Fig. 5f).

Type Locality

Bakers Range Drain, west of Penola, South Australia. Grid Reference on 1:250000 map series, Penola Sheet: 357393. Collected 22 November 1977 by D. N. Suter and P. J. Suter.

TABLE 1. COMPARISON OF QUALITATIVE CHARACTERISTICS OF ATALOPHLEBBIA AUSTRAI.IS, A. AUSTRALASICA AND A. AUR,ATUS FROM SOUTH AUSTRALIA

Character	A. austrulis	A. australasica	A. auratus
Male limago			
Body colour	Vellow-brown	Black-brown	Yellow-brown
Fore wing colouration	Pterostigna only (yellow)	Pterostigma only (brown)	Totally yellow
Hind wing colouration	Clear	Clear	Grey
Penes	Scparate apically	Fused apically with lateral lobes	Fused apically without lateral projections
Legs	Femur bancled	Femur banded	No banding
Fusion of tarsal Segment 1 of fore leg Fusion of tarsal	Partial	lartial	Parial
Segment 1 of middle and hind legs	Fuscd	Fused	Fused
Terminal filamens	Present-absent	Absent	Present
Nymph			
Dorsal eye colour or 0°	Scpia	Red-black	Pink-brown
Lateral eye colour	Black	Black	Black
Legs: banding	Femora 2 bands	2 bands	Absent
	Tibiale 2 bands	2 bands	Absent
	Tarsi 1 band	1 band	Absent
Postero-lateral spines on abdominal segment 9	Single	2 spines	Single
Abdominal tergite spines	Large singular spines with smaller basal spines	Singular spines	Single spines with smaller basal spines
Ciills	Trifurcate	Multilurcate	Multifurcate
L.elit mandible			
Incisors Outer	4	3	4
Incisors Inner	3	3	3
Prostheca	Robust-serrated	Robust-serrated	Rohuiteserrated
Right mandible			
Incisors Oulter	3	5	3
Incisors Inmer	2	2	3
Prostheca	Long, slemkler with 4 spines	Slender-serrated	Long, narrow

Type Specimens

A curatas is only known from the type locality. Holotype mate and paratypes are placed in the Museum of Victoria. The wings and legs of the holotype male are mounted on slides, and the mouthparts, legs and gills of the female nymph are also mounted on slides. The genitalia and body of the holotype are maintained in ethanol.

Type Habital

Near the source of Bakers Range Main Drain, which is a man-made drain, draining the swamps of Bakers Range in the South East of South Australia. The water at the type locality was evaporating rapidly during November 1977, when the type collection was made. A. unsirulis was also present at this locality,

Etymulogy of Specific Epirhet

The specific epithet auralus (L.), ornamented with gold, refers to the gotden coloration of the forewings which make this species distinct from all other described Atalophlebia species.

Affinities

In adult characters the wing coloration, genitatia and lack of banding of the legs distinguish this species from other deseribed species in the genus Alalophlebid, The nymph, lowever, resembles the nymph of A. australasica in possessing multifurcate gills. Although smaller than A. australasica (a character to be used with great care) the lack of banding of the legs, the presence of only one postero-lateral spine on the 9 th abdominal segment, the mandible incisors and prosthecae all distinguish A, aurans from A. australasica. A comparison of qualitative characteristics which distinguish the three Atalophlehia species found in Soulh Australia is presented in Table 1.

GENUS NOL/SIA Navás, 1918

Navás, 1918: 213; 1925: 308; Ulmer; 1919; 20 (lh Atalophlebia): Needham \& Murphy, 1924: 35-37; Lestage, 1931: 52: Traver, 1946: 420; Harker; 1950; 30-32; 1954: 242-243; 1957; 69-71; Riek, 1970: 239; Peters \& Edmunds, 1972: 1411; Tsui \& Peters, 1975: 540-542; Pescador \& Peters, 1985: 91-123.
Type Species: Nousia delicara Navas by original designation. Detailed characterisation of this genus is given by Pescador \& Peters (1985) and Suter (1980). There has heen considerable discussion of the validity of the genus Atalonella in Australia (Tsui and Peters 1972; Suter 1980) and following the work of Pescador \& Peters (1985) the South Australian species are placed in the gerous Nousia. Although differences between the South American and Australian species exist leg. egg structure) umil a full revision is performed all Atalortella species stould be considered as belonging to the genus Nousia.

Nousia inconspicua (Eaton) 1871 comb, nov,
Leptophlebia inconspicua Eaton, 1871: 79-80; Atalophlebia inconspicua Eaton, 1884: 87; Ulmer, 1908: 43-44; Tillyard, 1936: 31; Harker, 1950: 28; 1954: 265.

Male Imago

	\bar{x}	$S D$	n	Range
Body Length	7.27	0.50	26	$6.07-7.95$
Notal Length	2.26	0.15	26	$2.02-2.62$
Pronotal Width	0.96	0.09	16	$0.84-1.08$
Mesonotal Width	1.19	0.08	26	1.04

General colour black, with light transparent regions between adbominal segments, giving a banded appearance.

Head: black. Dorsal compound eyes light brown, lateral eyes grey.

Thorax: dark brown-black. Legs: fore legs dark brown, without banding. Middle and hind legs shorter, light brown, without bands. T_{1} fused to tibia, suture apparent. Ratios of leg segments: fore leg $1.00: 1.46$: $0.14: 0.48: 0.45: 0.33: 0.17(2.13 \mathrm{~mm})$; middle leg $1.00: 1.07: 0.06 \div 0,08 \div 0.08: 0,07: 0,16(1.44 \mathrm{~mm}) ;$ hind leg $1.00: 1.13: 0.06: 0.08: 0.08: 0.07: 0.16$ (1.49 mm),

Wings: fore wings (Fig. 8a) $3.29 \times$ longer than wide, plerostigmal region slightly opaque, with simple crossveins in distal $1 / 3$ only, proximal region of subcostal space withou cross-veins, distal region with very frint cross-veins, cubital and anal regions with few crossveins. Hind wing (Fig, 8b) $1.55 \times$ longer than wide, $4-5$ cross-veins in distal region of costal space, absent in proximal hall, subcostal space with $3-5$ eross-veins.

Abdomen: black with light eentral marking dorsally (Fig. 8h), all segments light brown ventrally (Fig. 8i).
Genitatia (Figs 8c, d): distal segment of toreeps globulat: Penes broad, fused along entire Jength, extending beyond constriction ol' proximal segment ol roreeps, ventral lobes triangular with base separate anteriorly, sperm ducts open on mid line (Figs 15a, b).

Manure Male Nymph (Fig. 14d)

	\bar{x}	$S D$	n	Range
Head Width	1.59	0.04	13	$1.54-1.70$
Notal Length	1.95	0.08	13	$1.80-2.12$
Pronotal Width	1.50	0.08	13	$1.38-1.56$
Mesenotal Widih	1.58	0.07	13	$1.50-1.72$
Cerci Length	9.92	-	1	-
Terminal Filanient Lengh	10.77	-	1	-

Head: dark brown. Dorsal compound eyes dark reddish brown.

Thorax, legs brown, no banding (Fig. 9a). Ratios of leg segments; lore leg $1.00 \div 0,92: 0.52(1.39 \mathrm{~mm})$; middle leg $1.00: 0.92: 0.44(1.39 \mathrm{~mm})$; hind leg 1.00 ;
$0.98: 0.36(1.49 \mathrm{~mm})$. Femme length to width ratio: fore leg 3.17, middle leg 3.20, hind leg 3.35.

Abdomen: brown dorsally with a light stripe down mid-line (Fig. 14d), posterior margins of terga with large singular spines, with smaller spines between them, Gills lanceolate (Fig. 9c), lamellae with numerous tracheal branches.

Mouthparts, labrum (Fig, 9d) $2 \times$ wider than long. median cavity without obvious rounded denticles (Fig. 9e). Left mandible (Fig, 9h): outer incisors with three teeth, inner with three teeth, prostheca long and slender, apically with two rounded teeth (Fig. 9i). Right. mandible (Fig. 9j): outer incisors with three teeth, inner with 2-4 teeth, prostheca simple, narrow with one apical spine (Fig. 9k). Hypopharynx (Fig. 9f), Maxillae (Fig, 91): proximal segment of palp $2.06 \times$ longer than wide, segment ratios $1.00=0.92: 0.80(0.22 \mathrm{~mm})$, Labium (Fig 9g): proximal segment of palp $1.98 \times$ longer than broad, distal segment with 3-4 shont apical spines, segment ratios; $1.00: 0.79 ; 0.64(0.35 \mathrm{~mm})$.

Female Imago

More robust than male, uniform brown. Fore wings with cross-veins along entire costal and subcostal spaces. Hind wings with cross-veins in radial, median and cubital sectors. Anal plate with a deep V shaped incision (Fig. 8e), no ovipositor (Fig. 8f), Egg, oval, 0.12 mm long, 0.09 mm wide with a polar cap of two tings of tubular projections on each apex (Fig. 16a).

Subimago

Black with uniformly grey wings.

Diagnostic Characteristics

1. Genitalia: penes shape, broad, fused, with triangular ventral lobes (Figs 8c, d and Figs 15a, b).
2. Lack of cross-veins in proximal regions of C and Sc spaces of fore wings (Fig. 8a).
3. Egg morphology, polar caps with 2 tows of tubular processes (Fig, 16a).
4. Nymphal gills lanceolate (Fig, 9c)
5. Mandibles, incisors and prosthecae shape (Figs $9 h-k)$.
6. Proximal segment of labial palp long and narrow (Fig. 9g).
7. Dorsal white stripe on abdomen (Fig. 14d),

History and Discussion

Until this study N inconspicua had the distinction of being the only species described from South Australia, Eaton (1871) described and placed ir in Leptoptilebia, noting the black and white patterning of the abdomen. His illistration of the genitalia differs from the scanning electromicrograph (Figs 15a, b) as he showed separate penes lobes. This separation of the
two lobes of the pencs is observed with air-dried specimens, and may oceur with shde-mounted material. Living, critical-point dried, and alcohol-preserved specimens possess genitalia with the two lobes held close together as illustrated in the micrograph. The type loeality of this species is Adelaide, but the river or stream from which the holotype was collected is unknown. In 1884 Eaton placed Nousia inconspicua in the new genus Atalophlebia where it has remained until the present study. Ulmer (I908) added to Eaton's description from material from the South-West of Western Australia. He included illustrations of mate genitalia, both wet-preserved in alcohol and dried, showing the separation of the paired penes lobes in the dried preparation. From the illastrations of the wings (the presence of cross-veins in the proximal half of the C and Sc regions of the fore wing) and gentalia it is difficult to know if the species described by Ulmer is N. inconspicua or a different species.

Tillyard (1936) recognised two groups within the genus Atalophlebia, and he included N. inconspicua in the group with the smaller species i.e. "smaller species, expanding from one-half to three-quarters of an inch (fore wing from 5108 mm long)". Since this species is not recorded in Tasmania, no deseription was given, and in fact it is only referred to in the adult key. All the other species from the smaller sized group were later placed in the genus Atalonella by Harker (1954), but N inconspicira was left in Atalophlebia.

The nymphs and adults of this species, as described above, have characteristics which distinguish them from the genus Atalophlebia, but are consistent with the generic characteristics of Nousia. Consequently N. inconspicua is now formally placed in the genus Nolisia.

Material Examined

SOUTH AUSTRALIA. Mt. Lofty Ranges: Aldgate Ck, Blackfellow Ck , Brownhill Ck , Bull Ck , Currency Ck , Deep Ck, Fifth Ck, Fimis R., Fourth Ck, Little Para R,, Marne R., Marialta Ck, Onkaparinga R., Scott Ck, Sturi R., Torrers R. Southern Flinders Ranges: Back Ck, Neetar Brook Dam, Roçky R., Schumacher CK, Skillogalee Ck, Spring C k, Wakefield R , Fleuricu Peninsula: Anacotilla Ck, Carrickalinga Ck, Coolawang Ck, The Deep Creek (Delamere), Gold Digging Swamp, Hindmarsh R., Kangarilla Ck, Myponga Ck, Vankalilla R. Kangaroo Island: Breakneck R., Cygnct R., De Mole R., Crassy/Sheep Ck, Middle R., North East R., Rocky R., South West Bay R., South West R., Stunsail Boom R.

Nousia fuscula (Tillyard, 1936)

Alalophlebia fuscula Tillyard, 1936: 44-47: Atalophlebia fuscula Harker, 1950: 28; Atalonella Juscula Harker, 1954: 242-243, 264; Scholes, 196t: 31-33.

Male Imago

	\bar{x}	$S D$	n	Range
Body Length	6.58	0.32	23	$5.82-7.01$
Notal Length	2.02	0.11	21	$1.84-2.20$
Pronotal Width	0.87	0.06	10	$0.74-0.92$
Mesonotal Width	1.02	0.09	20	$0.82-1.12$
Fore Wing Lengli	6.41	0.28	22	$5.90-6.97$
Hind Wing Length	1.29	0.09	23	$1.12-1.40$
Cerci Length	10.32	0.62	12	$9.23-11.11$
Terminal Filament Length	11,67	0.76	8	$10.77-13.00$

Head, black. Dorsal compound eyes, brown-grey,
Thorax: black. Fore legs black without banding. Middle and hind legs brown without banding. Ratios of leg segments: Fore leg $1.00 ; 1.29: 0.14: 0.49: 0.44$: $0.28: 0.16(1.64 \mathrm{~mm})$; middle leg $1.00: 1.15:-: 0.11$: $0.09: 0.09: 0.15(1.38 \mathrm{~mm})$; hind leg $1.00: 1.20:-$: $0.09: 0.08: 0.09: 0.15(1.58 \mathrm{~mm})$. Fore leg femur length $1.19 \times$ middle leg femur length, and $1.04 \times$ hind leg femur length.

Wings: fore wing (Fig. 10a) 3,13 \times longer than wide, pterostigmal region slightly tinged with brown, crossveins slanted, simple, costal space proximal to bulla with 3-7 very laint cross-veins, subeostal space with 2-4 cross-veins in proximal half, $7-10$ in distal half. Hind wing (Fig. 10b), $1.52 \times$ longer than wide, $3-4$ crossveins in distal region of costal space, absent in proximal half, subcostal space with $4-6$ cross-veins,

Abdomen; black, with brown and light brown markings (Fig. 10h); ventral pattern (Fig. 10i).

Genitalia (Figs 10c, d): distal segment of forceps globular. Penes lobes widely separated, eylindrical, constricted near apex, apex rounded, lobes apparenly sheathed, inner margin with a small spine hidden within sheath, visible in mounted preparations examined using transmitted light (Fig, 10j), but not in the Scanning Electron Micrographs (Figs 15c, d).

Mature Male Nymph (Fig. 14e)

	\tilde{x}	δD	n	Range
Head Width	1.44	0,06	6	$1.36-1.50$
Notal Lengil	1.71	0.07	4	$1.64-1.80$
Pronotal Wideh	1.28	0.04	4	$1.22-1.32$
Meronotal Wiath	1.33	0.06	4	$1.26-1.40$

Cerci and terminal filament danaged in available specimens.
Head: dark brown, Dorsal compound eyes reddish brown.

Thorax: pronotum with spine selae on antero-lateral margins. Legs brown, not banded (Fig, 11a), Ratios of leg segments; fore leg $1.00: 0.87: 0.55$ (1.18 mm); middle leg $1.00: 0.84: 0.39(1.19 \mathrm{~mm})$; hind leg $1.00: 0.91: 0.38(1.40 \mathrm{~mm})$, Femur length to width ratios, fore leg 2.74, middle leg 2.82, hind Ieg 3.11.

Abdomen: colour pattern irregular ($\mathrm{Fig}, 14 \mathrm{e}$). Spines on posterior margins of terga oceur either separately or in pairs. Gills (Fig. Hc); linear, lamellae lacking tracheal branches, or, if present, very short-

Mouthparts: labrum (Fig. Ild) $2 \times$ wider than long; median cavily with four to six rounded denticles (Fig. 11e), Left mandible (Fig. 11h), outer incisors with three apical teeth, inner incisors with three teeth, prostheca broad, robust, outer and apical margin serrated (Fig. 11i). Right mandible (Fig. 11j): outer incisors with three apical teeth, inner incisors with two teeth, prostheca simple, long and narrow with one apical spine (Fig. 11k). Hypopharynx (Fig, IIf), Maxillae (Fig, 111), proximal segment of palp $211 \times$ longer than wide Segment ratios: $1.00: 0.71: 0.78(0.21 \mathrm{~mm})$, Labium (Fig. 11 g): proximal segmetit of palp $1.57 \times$ longer than broad, scgment ratios; $1.00=0.7 \mathrm{~L}: 0.69(0.29 \mathrm{~mm})$,

Female finago

More robust than male, wings similar, hind wings with more cross-veins in radial, median and cubital sectors. Anal plate with a deep V shraped incision (Fig. 10c), no ovipositor (Fig. 10f). Eggs oval 0.12 mm x 0.09 mm , polar caps with three rings of tubulat processes (Fjg. 16b).

Subimago

Dull black, wings opaque, dark grey,

Diagnostic Characterishics.

1. Male genitalia, lateral lobes of penes widely separate, small spine on mesal margin of lobes (Figs $10 \mathrm{c}, \mathrm{d}$ and Figs $15 \mathrm{c}, \mathrm{d})$.
2. Cross-veins in proximal region of costal and subcostal spaces (Fig. 10a).
3. Egg polar cap with 3 coronae of tubular processes (Fig, 16b).
4. Nymphs have linear gills with few tracheal branches on lamellae (Fig, 11c).
5. Mandibles, shape of incisors and prosthecae (Figs $11 \mathrm{~h}-\mathrm{k}$).
6. Proximal segment of labial palpi broad (Ftg. 11g).
7. Abdominal colour pattern irregular (Fig. 14e).

History and Discussion

Tillyard (1936) described the adults (male and female), subimago, and nymph of N, fuscula placing it in his distinct group of small species of the genus Alatophlebia. Harker (1954) recognisd that all the species Tillyard placed in this second group of smalisized species belonged in the genus Atalonella. These species now belong to the genus Nousio, and N fiscula is formally included in this genus,

The male genitalia are distinctive in N, fuscula, with a small spine on the mesal margins of the penes lobes, but the associated nymph in South Australia differs from the description and illustration given by Tillyard (1936). The gill illustrated by Tillyard shows a more lanccolate lamella with numerous tracheal branches, both shape and tracheation are inconsistent with the associated nymphs of South Australia. Nymphs of Tillyard's description were not found at Tookayerta

Creek (the only locality where N. fuscula is present on the Fleurieu Peninsula), but one of a simidar description to his was recorded from Deep Creek, east of Port Macdonnell in the South East of South Australia. Similar nymphs from the Grampians, Victoria, were bred through and N. pilosasp. nov, was the associated adult. Field observations suggest that N. fuscula emerges before N. pilosa, therefore leaving N. pilosa nymphs in the stream. This observation was repeated by the author in the South East of South Australia, the Grampians, Vietoria, and in Tasmania. The nymphs of N. fuscula from Tasmania (cotlected in February 1978 and associated with adults) were similar to those in South Ausrralia. From these observations it appears that Tillyard indirectly associated the nympt in the stream with the flying adults and emerged subimagos rather than by breeding through the nymphs and directly associating these with the resulting adults.

Material Examined

SOUTH AUSTR.4LIA. South East: Cress Ck, Deep Ck, Eight Mile Ck. Fleurieu Peninsula: Tookayerta Cki VICTORIA. Aire R., Albert R,, Beehive Ck, Crawford R., Cumberland Ealls (Marysvile), Darlots Ck, Genoa Ck, Howqua R., Jimmy's Ck, Little R, Mckenzie R., Mt. Zero Channel, Stony Ck (Halls Gap), Tanjil R., Tarwin R., Toorongo Falls (Noojee).
NEW SOUTH WALES. Leatherbarrel Ck, Styx R., Wallagaraugh R.
TASMANLA. Break O'Day R., Dee R., George R., Great Forester R., I sis R., Macquarie R., Rostrevor Ck.

Noasia pilosa sp. nov.	
Holotype Mate	
Body Length	7.50 mm
Notal Length	1.90 mm
Pronotal Width	0.93 mm
Mesonotal Width	1.17 mm
Fore Wing length	7.67 mm
Hind Wing Lengit	1.23 mm
Cerci Lengll	9.05 mm
Terminal Filament Lengrh	12.00 mm

Head: black-brown. Dorsal eyes pink/brown,
Thorax: pronotum black, narrower than head. Fore leg without banding, femur dark brown, tibia and tarsi light brown, T_{1} partially fused to tibia; middle and hind legs with dark brown femora each with one black band at $3 / 4$ of length, tibiae and tarsi light brown, T_{1} fused to tibia. Ratios of leg segments: fore leg 1.00 : $1.52: 0.08: 0.48: 0.51: 0.38: 0.15(1.92 \mathrm{~mm})$; middle leg L00: $1.22:-0.07: 0.07: 0.07 ; 0.11(1.62 \mathrm{~mm})$; hind leg $1.00: 1.35:-: 0.09: 0.08: 0.07: 0.13$ (1.67 m m 7).

Wings: fore wing (Fig, 12a) $3.3 \times$ longer than wide, pterostigmal region wilh simple, slanted eross-veins, proximal $2 / 3$ of costal space without cross-veins, subcostal space without proximal eross-veins, distal
region with seven. Hind wing (Fig. 12b, c) 1.52 * longer than wide: 2 cross-veins in distal region of costal space, absent in proximal half, sub costal space with 3 cross-veins,

Abdomen: dark brown with mid-dorsal light brown region on segments 2-7, segments $8-10$ dark brown (Fig. 12g); ventrally light brown (Fig. 12h). Base of each segment of caudal filaments tinged with brown giving a banded appearance.

Genitalia (Figs. 12d, e): second segment of forceps short, ovoid, distal segment globular. Penes fused, apex with 2 lobes, ventral surface lacking lobes (Figs 12d, $15 \mathrm{e}, \mathrm{f})$.

Mature Male Nymph (Fig. 14f)

Head Width	1.20 mm
Notal Length	2.30 mm
Pronotal Widtt	1.09 mm
Meronotal Width	1.31 mm
Caudal Filaments	Damaged in type

Head, light brown, light marking in centre of frons. Dorsal eyes red-brown.

Thorax: pronotum width $0.91 \times$ head wideh, lew spine setac present on antero-lateral margin. Legs light brown, without banding, margins of segments lined with long fine setac (Fig, 13a). Tarsal claws with 12 peglike teeth (Fig 13b). Ratios of leg segments: fore leg $1.00: 0.96: 0.40(1.70 \mathrm{~mm}) ;$ middle leg $1.00: 0.95$: $0.31(1.77 \mathrm{~mm})$; hind leg $1.00: 1.01: 0.29(1.93 \mathrm{~mm})$. Femur length to width ratios: Fore leg 3.13, middle leg 3.39, hind leg 3.70,

Abdomen: dark brown with light central marking (Fig, 14f), Gills (Fig. 13c) tanceolate with single terminal tracheal fitament, lamellae with tracheal branches obvious.

Mouthparts: labrum (Fig. 13d) $1.5 \times$ wider than Jong; anterior margins with a median cavity with six rounded denticles (Fig. 13e), one row of setae behind median cavity. Left mandibles (Fig. 13h); outer incisors with three apical teeth, inner incisors, with three apical teeth and two ridges on inner margin, prostheca broad basally, long and slender distatly with three terminal teeth (Fig. 13i). Right mandible (Fig. 13j), outer incisors with three apical teeth, inner incisors with two leetr; prostheca slender, elongate with a long terminal spine (Fig, 13k). Hypopharynx (Fig, 131), Maxillae (Fig. 131); palpi, proximal segment $1.79 \times$ longer than wide, Segment ratio $1.00: 0.68: 0.68(0.27 \mathrm{~mm})$, Labium (Fig. 13g); palpi, proximal segment $2.26 \times$ longer than broad, distal scgment; apex with four shorl leeth, segment ratios; $1.00: 0.77=0.49(0.44 \mathrm{~mm})$,

Female Imago

Unknown.

Dugnostic Characleristics

1. Genitalia of malc imago (Figs I2d, c and Figs 15c, l),
2. Gills of nymphs lanceolate, similar to N . inconspicua (Fig. 33c),
3. Labrum long (widh $1.5 *$ greater than length) (Fig. 13d).
4. Prostheça shape of left and right mandibles (Figs 13i, k).
5. Legs lined with numerous long fine setac (Fig. 13a).

Type Locality

Type material was collected from Scoond Wannon River on the road from Halls Gap to Dunkeld, Gampian Mountains, Victoria. Grid Reference on 1:250000 map series Ballaral Sheet: 547396. Collected 25 November 1977 by D. N. and P. I. Suter.

Type Specimens

Holotype male, and nymphal exuvium are placed in the Muscum of Victoria. The wings and legs of the bololype are monnted on slides, and the body and genitalia are maintained in ethanol. The nymphat exuyium is mounted on slides. Three paratype males, I wo mature males and ihree inature female nymphs are included in the type series. Slides of a nymph, and adult male imago Irom Hitchoock Drain, South East South Australia, are also included.

Type Habilat

The Second Wannon River in the Crampians Mountains, is a moderately fast-flowing stream over cobble-sized rocks.

Etsmology of Specific Lepithet

The specific epithe pllose (L) for hairy refers to the long, line setae which line the margins of the legs distinguishing this species tronn N. inconspicum and N. / Iuscrule

Affinities

In the adult characters N. pilosa resembles closely N. inconspicua, with the penes rused, and lacking spination. N. fusculur is distinctly different with V-shaped penes, and internal spines. Although superficially similar, the penes of N. ineonspicum and N. pilosa are dislinet, with N. inconspictur with obvious veneral lobes, and separared basal halves of the penes (Figs 15a, b). N, pilosa lacks the ventral lobes, and the pentes are fused along their entire length.

In nymphal characters N. pilosa resembles N. inconspictu, possessing lanceolate gills, but lacks the obvious dorsal white stripe on the abdomen, characteristic of N. inconspicua. The mouthpart structure, espectially the labrum (lig. 13d) and prosthecal structure (Figs 13i, h), and the tine setae on the legs, clearly distinguish N. pilosa from both N. inconspiena and N. fiuscula.

A comparison of qualitative charaeteristics of the three species of Nousia from South Austratia is given in Table 2.

History and Discussion

As mentioned previously the description of N. fuscula nymphs given by Tillyard (1936) is similar 10 that of N. pilosa and the associated nymph of N. firsiula differs from the deseription given by Tillyard. N. fuscula and N. pilosu appear ecologically separated by the timing of maturation and the imato mating flights. Therefore, it is possible that Tillyard indirectly associated the nymphs and adults collected from the River Shannon. Tasmania. Consequently it appears that the nymph of N. pilose was indirectly ascrited to N. fuscula. The present descriptions are based on associated material, and distinguishes the nymphe of these two co-occuring species.

TABLE: 2, COMPARISON OF゙ QUALITATIVE CHARACTERISTICS OF NOUSIA /NCONSPICUA, N.FUSCULA NND N. PlLOSA IFROM SOUTH NUSTRALIA

Charactel	N. inconspicua	N. Juscula	N. pilosa
Mate lmaga			
Less: banding	Absem	Absens	Present
Penes	Fused apically	Separate apically	
	Ventrat lobes present	Ventral Inbes absem	Ventral lobes absent
	No internal spines	Internal spines presen	No internal spines
Nymuk			
Legu: banding	Uniform brown	Abrent	Prewert
Cilly	Broad lancolate	Linear	Broad lancolate
Lamellae trachea	Plentiful, branched	Few, simple	Plentiful, branched
Leli mandible			
Incisoms Oufer	3	3	
Incisors Inner	3	3	3
Riglt mandible			
Incisom Oumer	3	3	3
Incisors Inuer	2	2	2
Prosilicala Lefi	Slender, iwo terminal spines	Robusi, apeex serrated	Slender with lateral comb
Prostheea Kight	Slender, wo terminal spines	Slender, iwo terminal spines	Slender apex wifh thrce apines
1.athial patpi	Slender	Broad	Slender
Labrum	Width $\div 2 \times$ length	Widuh $\%$? \times lengh	Width <2- lengil
Hypoplayyu.	Not divided	Deeply divided	Not divided

GENUS ULMEROPHLEBIA Demoulin 1955
Demoulin 1955: 228-229; Tsui and Peters 1975: 538.

Male Imago

Fore wings $3.3 .5 \times$ longer than wide with numerous cross-veins, those in the subcostal space are upright and parallel. Hind wing with narrow costal region with Dumerous cross-veins apically, Sc joins wing margin at $3 / 4$ of wing length, MA forked, single intercalary present. Tarsal claws dissimblar, one blunt elub-shaped, one long, slender, hooked distally (Fig. 17h). Forceps three-segmented, basal segment very long. Penes much whorter than basal segment of forceps, not reaching narrowing of this segment. Cerci longer than terminal filament.

Type Species: Ulmerophlebia mjobergi

Mature Nymph

Head without tusk-like projections, Jabrum with a small convex projection on mid-anterior margin. Labial palpi three-scgmented. Maxillary palpi threesegmented, distal segment very small. Gills on abdominal segments 1-7 paired, each consisting of a pair of broad, avate lamellae, with apical tracheal filaments fringed with long fine hairs. Body and legs fringed with long fine setge. Abdominal segments 6-9 with postero-lateral margins produced into backwardpointing projections.

History and Discussion

Ulmerophlebia was described by Demoulin (1955) to include a species described by Ulmer (1916) in the genus Euphyrus as Ei mjobergi. Subsequently Ulmer (1920) placed this species in Deleatidium and, Harker (1953) accepted this derermination. In 1955, Ulmer noted that the 21 CuA were parallel, the hind wings had an Sc which joined the wing margin at $3 / 4$ of wing length and resembled Atalonella, However, the short pointed penes of D. mjobergi separated this species from Deleatidium and Alalonella, and therefore a new generic designation was made. The only generic description is made by Ulmer (1916) in his species deseription and, therefore the chatacteristics of the imago are included here,

The nymph of Ulmerophlebia has never been formally described and, therefore the generic characteristics are also given here.

In the nymphal charaeteristics Ulmerophlebia resembles very closely nymphs of Jappa Harker. The only major distinguishong feature is the lack of frontal horns characteristio of this latter genus. Riek (1970) also made note of this similarity although indirectly, by stating that the eastern states ${ }^{*}$ nymphs of the genus Jappalack frontal horns. Tsui \& Peters (1975) examined the thoracic morphology of nymphs of Uhmerophlebia and, although the nymphs had not been described or associated with adults they found only 4 of the 16
character states that they examined differed from nymphs of Jappa, These, plus the absence of fromal homis are the only diflerences in the nymph.
In the adults the major differences are the length of the penes, which in Jappa are almost equal to the length of the basal segment of the forceps and, the shorter Sc vein in the hind wing which extends almost to the apex of the wing in Jappa. Tsui and Peters (1975) recorded 1 of 6 character states that differed.
Clearly Jappu and Ulmerophlebia are closely related and future research may demonstrate that the two are congeneric. However, on the basis of the limited South Australian material, this is not possible as part of this work.

Ulmerophlebia pipinna sp. nov.
Holotype Mate Imago

Body Lenglt	9.44 mm
Notal Length	2.54 mm
Pronotal Width	0.92 mm
Meronotal Width	1.33 mm
Fore Wing Lergith	9.31 mm
Hind Wimg Length	2.03 mm
Cerci Lengh	14.10 mm
Terminal Filament Length	11.97 mm

Head: dark brown, with a white paich between ocelli. Antennae short, 1 mm long, hasal segment twice as long as wide, flagella $0,87 \mathrm{~mm}$ long.

Thorax: light brown dorsally with white patches on scutosculellum, laterally with patches of white and pink. Legs light browni, femora with two dark bands, one distally, and one at $2 / 3$ of length, T_{1} parially fused to tibia, join apparent. Ratios of leg segments: fore leg $1.00: 1.74: 0.07: 0.65: 0.60: 0.47: 0.19$ (1.84 mm); middle leg $1.00: 1.28: 0.04: 0.09: 0.09$: $0.06: 0.20(1.49 \mathrm{~mm})$; hind leg $1.00: 1.09: 0.04: 0,08$: $0.06: 0.06: 0.15(1.80 \mathrm{~mm})$. Sternum dark brown (Fig. I7e). Prosternum with heavily sclerotized base. Mesosternum: basisternum length 1.46 * width, 0.79 s) furcastcrnum length, posterior margin rounded; furcasternum length $0.87 \times$ width, lateral matgins of median longitudinal invagination divergent posteriorly, posterior margin slightly coucave.

Wings: hyaline. Fore wing (Fig. 17a), length 3.5 又 width, cross-veins in plerostigmal region simple, costal cross-veins extending along entire length, slightly shaded with grey, cross-veins of subcostal space also shaded with grey. Hind wing (Fig. 17b), length $2 \times$ width, costal hump not exaggerated, costal space with 5 cross-veins distally. R_{1} straight, R s joins MA in centre of wing, MA straight, MP branched in proximal half of wing, anal region without cross-veins.

Genitalia: forceps light brown, proximal segment long, $0.74 \mathrm{~mm}_{\text {, }}$ broad at base, narrows approximately hall way along length, second segment almost square. distal segment longer, nanrow proximally. Penes paired, very short, extending half way to narrowing of proximal segment of foreeps, separate, mesal margins divergent, lobes simple (Figs 17c, d; 19a, b).

Mature Female Nymph (Fis. 20)

Head Width	1.96 mm
Notal Length	3.12 mm
Pronoral Width	2.32 mm
Mesonotal Width	2.36 mm
Cerci Length	8.25 mm
Terminal Jilament Length	9.71 mm

Heud: brown. Lateral eyes black. Antennae 3.08 mm long with whorls of setae at apex of each segment. Tentorial body; width $2.33 \times$ length.

Thorax: brown. Pronotum, brown with black-brown median marking, lateral margins lined with long fine setac. Legs brown, with one mid and one distal black band on Temora; tibiae and tarsi not banded (Fig, 18a). Tarsal claws short and curved, with 12-16 small rounded ventral denticles (Fig. 18b), Fenora of fore and middle legs almost equal in length, hind leg longest, $1.34 \times$ Pore femur length. Ratios of leg segmentsi fore leg $1.00: 1.04: 0.37(1,66 \mathrm{~mm}) ;$ middle leg $1.00: 0.94$: $0.33(1.60 \mathrm{~mm}) ;$ hind leg $1.00: 0.87: 0.26(2.14 \mathrm{~mm})$. Femur Iength to width ratios: fore leg 2.18 , middle leg 2.22, hind leg 2.68. Sternum: prosternum triangular with apex truncated, sternacostal suture absent. Mesosternam: basisternum, almost square, length 0.92 * width, and equal to furcasternum length, sternacostal suture present. Metasternum: basisernum narrower than mesofurcasternum, width $4.75 \times$ length.

Abdomen: dark brown with light central stripe on segments 4-7. segments 8, 9, and 10 dark brown (Fig. 20). All segments with long fine setae dorsally. Caudal filaments well developed, terminal filament longer (han cerci. Gills (Fig. 18c).

Mouthparts: labrum $(\Gamma \mathrm{ig}, 18 \mathrm{~d}) 2.12 \times$ wider than long, lateral margins angular lined with long line setae, mid anterior margin whth seven inbercles, three tubercles on each side of a large sharp central projection (Fig. 18e), dorsal surface covered with long setae. Left mandible (Fig. 181); lateral margin lined with long setac, incisors displaced mesally, outer incisors with two large tecth and four smaller teeth on mesal margin, inner incisors with three apical teeth and one small lateral mbercle, prostheca narrow with six spines (Fig. 18i). Right mandible (Fig. 18j); outer margin lined with long setac, incisors displaced mesally, outer incisors rugose, with three apical teeth, with four lateral iubercles, inner incisors with two apical teeth and one lateral fubercle, prostheca long, spinous (Fig. 18k). Hypopharynx (Fig 18f). Maxillac (Fig. 181) galeolacinia rectangular, row of sixteen rake setae on ventral surface, rake setac also interspersed within apical brush; mesal corner with one large rake spine, inner margin lined with long line pinnate setae; palpi longer than galeo-lacinia, proximal segment $2.33 \times$ longer than wide, second segment long and broad, $1.88 \times$ longer than wide, distal segment very short, triangular, covered with long setae, apex with iwo short spines, segment ratios 1.00$): 0.94: 0.29$ (0.36 mra). Labium (Fig. 18g); proximal segment ol palpi $1.71 \times$ Ionger than wide, segment tatios $1.00: 0.65 ; 0.58(0.41 \mathrm{~mm})$.

Female Imago

Unknown.

Subimago

Unknown.

Male Nymph

Unknown.

Diagnostic Characteristies

1. Genitalia of mate imago, penes very short and simple (Figs 17c, d; 19a, b).
2. Wing length $3.5 \times$ width (Fig. 17a),
3. Femora of imago with two black bands.
4. Nymph without lrontal lobes (Fig. 20).
5. Labrum with one mid anterior projection and three denticles on each side (Figs 18d, e).
6. Maxillary palpi three segmented (Fig. 181),
7. Lateral projection of glossac of labium (Fig. 18g).
8. Mandibles, shape and form of incisors and prosthecae (Figs 18h-k).

Type Locality

Second Wannon River, Grampian Mountains, Victoria, Girid Reference on $1: 250000$ map series Ballarat Sheet: 547396 . Collected 25 November 1977 by P. I. and D. N. Suter.

Type Specimens

The holotype male is deposited in the Museum of Victoria. Two paratype imagos are also placed in the Museum of Victoria. The wings and legs of the bolotype male are mounted on slides, and the genitalia and body are in ethanol. The female nymph is mounted on slides.

Type Habitat

The Second Wannon River in the Grampian Mountains, is a moderately fast-flowing stream oyer large cobble-size rocks. The nymphs were collected using a kick-sample technique, and therefore there is no certainty of the habitat heing occupied by this species.

Etymology of Specific Epithet

The penes of U pipintur are very short and simple, hence the specific epithet pipinna (L) for small penes.

Affinities

The male imago of U. pipinnu can be distinguished from U, miobergi by the short simple penes. In $U /$. mjobergi the penes are short and boot shaped, having a lateral angular projection, absent in U. pipinna.

Material Examined
SOUTH AUSTRALIA. South East: Ctess Ck, Eight Mile Ck, Hitchcocks Drain.
VICTOR LA, Crawford R., Fitzroy R., Fyans Ck, Shaw R.. Wannon R., Second Wannon R.

FAMILY BAETIDAE

This family occurs on every continent, and is represented in Ausralia by the genera Baetis Leach, Bungona Harker, Centroptilum Eaton, Cloeon Leach and Pseudocloeon Klapálek.
Characterization of the Baetidae can be found in Edmunds, Jensen and Bernet (1976),

GENUS BAETIS Leach 1815

Leach, J815: 137; Burmeister, 1839; 800 (B. costalis later placed in Atalophlebia); Pictet, 1843: 189-191 (B. australasica later placed in Alalophlebia); Walker, 1853: 559-561 (B. ausiralasiva, B. costalis); Eaton, 1871: 110; 1881: 196; 1885; 156-158; Ulmer, 1908: 44-45; Tillyard, 1926: 64; 1936: 50-53; Harker, 1950: 21-24, 29; 1954: 263-264, 266; Scholes, 1961: 36-38: Rick, 1970: 235.

Type Species: Baetis bioculatus (Linn, Fabr.),
The first record of Baetis from Australia was made by Ulmer (1908) when B, soror was described from Western Australia, Tillyard (1936) described B. frater from Tasmania, and Harker (1950) added two further species B, baddamsue and B. confluens from New South Wales. In 1954, Harker described B. sogerensis from Porl Moresby, New Guinea, but this species has not been recorded on the Australian mainland.

Müller-Liebenau $(\$ 969,1973)$ recorded and discussed the characteristics lised in the revision of the European species of Baetis; these characteristics have been found fo be useful in the present study. The following redeseription of the male adult, and the original description of the nymph of B, soror Ulmer, include the characteristics which Müller-Liebenau $(969,1973)$ found to be species specific.

Baetis soror Ulmer 1908

Baelis soror Lllmer, 1908: 44-45; 'Tillyard, 1926. 64; Harker, 1950: 29; 1954: 266

Male Imago

	\hat{x}	$S D$	n	Range
Body Lengih	5.45	0.45	18	$4.40-6.00$
Nolai Lengh	1.59	0.21	14	$1,36-2.00$
Pronatal Width	0.62	0.08	12	$0.54-0.76$
Meanotal Width	0.88	0.08	12	$0.74-1.00$
Fore Wing Length	4.93	0.51	30	$4.20-5.82$
Hind Wing Length	1.01	0.16	30	$0.80-1.26$
Cerci Length	11.57	0.92	5	$10.25-12.50$

General colour brown.

Head: dark brown. Dorsal turbinate eyes yellow, oval, lateral eyes black.

Thorax: light brown. Pronotum narrower than head. Legs; buff, slender. Fore legs longer than middle and hind legs, fore leg femur length $1.23 \times$ middle leg femur length, and $1.25 \times$ hind leg femur length, middle and hind legs with four tarsal segments. Ratios of leg segments; fore leg $1.00: 1.80: 0.08: 0.78: 0.62: 0.37$: $0.18(0.93 \mathrm{~mm})$; middle leg $1.00: 0.98: 0,16: 0.13$ $0.07: 0.20:-(0.75 \mathrm{~mm})$; hind leg $1.00: 0.97=0.16:$ $0.13: 0.07: 0.20 ;-(0.76 \mathrm{~mm})$. Tarsal claws dissimilar, one blunt, club-shaped, one slender with a terminal hook.

Wings: fore and hind wings hyaline with light brown venation. Fore wing (Fig. 2la) $2.67 \times$ longer than wide, pterosligmal region slightly opaque (milky) with 7-10 cross-veins, anastomosed, branched or incomplete, proximal region of costal space without cross-veins. Hind wing with triangular costal projection, three langitudinal veins, second forked with one intercalary, one proximally located cross-vein in costal space (Fig. 21b).
Abdomen: brown, with black marking (Fig. 2lc). Cerci long, terminal filament reduced to a basal stump.

Genitalia: proximal segment of forceps cylindrical, second segment bulbous, fused to third segment, third segment long and slender, distal segment short but $3 \times$ longer than wide, rounded, bulbous distally. Covers of penes broad, extending beyond bulbous second segment ol forceps, bluntly pointed with divergent apices (Figs 21d; 19c).

Mature Male Nymph (Fie. 2fe)

	\bar{F}	$S D$	n	Range
Head Width	0.97	0.07	22	$0.86-1.06$
Notal Length	1.50	0.14	17	$1.30-1.74$
Pronotal Width	0.87	0.09	17	$0.76-1.00$
Mesenotal Width	1.27	0.13	17	$1.06-1,46$
Cerci Length	3.43	0.50	7	$2.60-4,16$
Terminal Filament Length	2.29	0.24	7	$2.00-2,60$

Body cylindrical, light brown.
Head: brown, dorsal compound eyes sepja, lateral eyes black. Antennae long without apical projection on basal segment.

Thorat mesonotum brown with an oxbow shaped white marking beside mesonotal suture, Legs bulf-grey with darker femur-tibia joint (Fig. 21f). Tarsal claws short curved with ventral peg-like denticles (Fig. 21g). Ratios of leg segments: fore leg $1,00: 0.72: 0.64$ (0.77 mm); middle leg $1.00: 0.71: 0.58(0.79 \mathrm{~mm})$; hind leg $1,00: 0.68: 0.54(0.82 \mathrm{~mm})$. Femur length to width ratios; fore leg 3.15 , midale leg 3.45 , hind leg 3.70.

Abdomen: brown, without definite markings. Posterior margins of terga with short sharp spines. Paraprocts curved, lined with $17-24$ spines (Figs 21 h ; 22a, b). Gills (Figs, 21i), margins scrrated with one fine bristle alternating with each serration (Fig, 21i), first gill small without clear trachea, gills 2-7 with black branched trachea, 3,4,5, largest, ovare, 1,7 nartower.

Mouthparts: labrum (Fig. 21j) ovoid, lengith 0.58 > width, with deep concavity in centre of anteriot margin (Fig. 2lk), two small median denticles within concavity. Left mandible (Fig. 2ln) outer incisors with three teeth, outer tooth broad and robust, inner jncisors with one long central tooth and thres shorter Iateral teeth, prostheca robust with one large curved apical tooth with 3.4 spines in concavity of tooth (Fig, 210). Right mandible (Fig. 21p); outer incisors with first tooth robust with two small inner teeth, inner incisors with 1-2 long eentral teeth with two (one each side) lateral teeth, prostheca long and narrow with outer margin lined with 6-7 setae (Fig. 21q). Hypopharynnx (Fig. 21r), Maxillae (Fig. 211); galeo-lacinia long and narrow with pointed apex, lined with four stout teeth, ventrally with a line of pinnate setae and a line of curved setae below reeth, palpilonger than galeo-lacinia, three-segmented, segment ratios $1.00: 1.45: 0.36(0.10 \mathrm{~mm})$, distal segment with a short tooth, all segments with short fine setae. Labium (Fig. 21m); palpi, length of proximal segment 2,06 widrh, inner margin of second segment produced forming a lobe, segment ratios $1.00: 0.71$: $0.33(0.19 \mathrm{~mm})$.

Female Imago

Wings similar, lacking dorsal compound eyes, fore legs shorter then male, body colour cream, abdomen broad.

Femule Nymph

Similar to male, lacking dorsal compound eyes, lateral eyes black.

Diagnostic Characteristics

1. Hind wings with three longitudinal veins, second lorked (Fig. 21b).
2. Third and fourth segments of foreeps elongated (Figs 21d; and Fig. 19c),
3. Dorsal compound eye yellow in imago.
4. Incisors and prosthecae of left and right mandibles (Figs 21n-q).
5. Number of spines on paraprocts (Figs 21h; 22a, b).

History and Discussion

Ulmer (1908) described Baetis soror from south-west Westerri Australia. This species resembles the South Australian species in hind wing venation and forceps structure. Ulmer recorded that "the costal and subcostal region of the fore wings are weakly tanned (browned)" sic, translation from Ulmer, 1908, but the South Australian specimens possess a milky costal and subcostal region. Müller-Liebenau (1973) stated "the colour of the pterostigma can be useful, especially when one separates two related species in the same material". This colour difference is usually associated with other character differences (genitalia and hind wing venation) and is not used as a primary specifie chatacter, Until Further material from Western

Australia is made available, it is considered that this single feature which differs from the type description is not enough to validate erection of a new species for the South Australian material. This material is therefore designated as Baetis soror Ulmer,

Material Examined

SOUTH AUSTR,ALlA. South East: Eight Mile Ck; Deep Ck, Jerusalem Ck, Mosquito Ck, Hitchcock Drain. Mt. Lofly Ranges: Deep Ck, Little Para R. Fleurieu Peninsula: The Deep Ck (Delamere), Finnis R., Hindmarsh R., Inman R., Tookayerta Ck, Yankalilla R. Southern Flinders Ranges: Nectar Brook Ck, Spring Ck. Northern Flinders Ranges: Balcanoona Ck, Brachina Ck, Bunyeroo Ck, Elatina Ck, Emu Ck, Wirrealpa Ck.

GENUS CENTROPTILUM Eaton 1869

Eaton, 1869: 131-132; 1871: 107-108; 1885: 174-175; Harker, 1957: 75-76; Rick, 1970; 235.

Type Species: Centroptilum luteolum Eaton.
Centroptilum is also a cosmopolitan genus, but it Was not until Harker (1957) described C. collendum from Kuringae Chase, New South Wales, that an Australian species was recognised. A new species C. elongarum Sp. nov, which is recorded in South Ausiralia, is described from associated material from the Wannon River, Victoria. C. elongatum has a limited distribution in South Australia and although many nymphs are present in the collections there are relatively few adult specimens. Consequently the type serics was taken from a much larger collection made in Victoria, from which some assessment of variation of character expression could be made.

Centroptilum clongatum sp. nov,

Fololype Male	
Body Length	8.20 mm
Notal Length	2.01 mm
Pronotal Width	0.95 mm
Mesonotal Width	1.33 mm
Fore Wing Length	7.05 mm
Hind Wing Length	1.72 mm
Cerci Length	14.02 mm
Terminal Eilament absent.	

Head: light brown. Dorsal eyes turbinate with upper portion brown/orange, oval, lateral eyes grey.

Thorax: pronotum brown. Metanoturn dark brown with median backward-produced projection (Fig. 23c). Legs; fore leg femur light brown, tibia and tarsal segments darker brown, middle and hind legs light brown, tarsal segments darker brown, T_{1} fused to tibia in all legs. Fore leg longer than middle and hind legs, fore leg femur length $1,19 \mathrm{x}$ middle leg fermur length, and $1.16 \times$ hind leg femur length. Ratios of leg segments (second value is the combined tibia $+J_{1}$
length to femur (engti): Fore leg $1.00: 1.18:-: 0,50$: $0.44: 0.26: 0.16(1.60 \mathrm{~mm})$; middle leg $1,00: 0.75 ;-$: $0.19: 0.10: 0.08: 0.16(1.34 \mathrm{~mm})$; hind leg $1.00: 0.74$: $-: 0.19: 0.10=0.07=0.16(1.38 \mathrm{~mm})$. Stẹtoum Iight brown (Fig. 23e).

Wings: hyaline. Fore wing (1 jg .23 a), 2.78 longet than wide, costal and subcostal spaces shaded with yellow, pterostigma with $10-14$ cross-veins, some forked. one faint cross-vein in costal space present or absent, subcostal space with six cross-veins. Hind wing (Fig. $23 b) ; 2.15 \times$ longer than wide, with a curved costal projection, three longitudinal veins, second forked with one interealary, two cross-veins between first and second longitudinal veins.

Abdomen: brown dorsally witfred tinges in patehes on segments 2-4 and 6-9, segment I dark brown (Fig, 23e). Light brown ventrally with paired brown markings on each side of median line.

Genitalia (Fig. 23d; Fig. 19d): forceps foursegmented, proximal segment rectangular $1.6 \times$ longer than wide, second segment fused to third segment, third segment long and slender, bowed slightly, distal segment shorter, rounded apically. Pene covers paired, rectangular, rounded apically, divergent, extending beyond apex of proximal segment of forceps.

Mature Male Nymph (Fig. 231)

Body Lenglh	7.68 mm
Head Width	1.32 mm
Notal 1ehgh	2.12 mm
Pronglal Width	1.16 mm
Mesonotal Width	1.68 mm
Cerci Length	4.20 mm
Terninal Filament Length	3.44 mm

Body colour brown.
Head: brown. Dorsal compound eyes red-brown.
Thorax: brown. Legs yellow-brown with black patches distally on femur about $2 / 3$ of length (Fig. 24a): tibia and tarsi yellow-brown, not marked. Tarsal claws very long and slender, half tarsal length, lined proximatly with L3-20 fine denticles, distal half smooth and tapering, Ratios of leg segments: fore leg 1,00 : $0.63: 0.66$ (1.28 mm); middle leg $1.00: 0.62: 0.54$ $(1.30 \mathrm{~mm})$; hind leg $1.00: 0.62: 0.52(1.30 \mathrm{~mm})$. Femur length width ratios: fore leg 4.92 , middle and hind leg 5.42.

Abdomen: brown, with tinges of red-brown, patrerned as in Fig, 231. Posterior margin of tergites with long spines and smaller minute spines between them. Hind margin of sternites similarly lined with long spines and only minute inner basal spines. Paraprocts rounded, with 25 large spines on internal and apical margins (Fig. 24c; Fig. 22d); hind matgins of tiunth sternite with developing Poreps, separated by a concave depression with 24 spines (Fig. 24b; Fig. 22e). Gills with black, branched trachea (Fig. 24d), first gill smallest. hatf-moon-shaped, fifih and sixth largest, margins
serrated with one short fine bristle jn each depression.
Mouthparts: labrum rectangular (Fig. 24e), length $0.77 \times$ width, with a broad, deep, V-shaped concavity, with truncaled apex, and lateral dentieles near apex (Fig. 24f). Left mandible (Fig, 24i), outer incisors with four large teeth apically and four smaller teeth along inner margin, outer margin with one long spine, inner incisors with three large apical teeth and 3-4 small tubercles on imner basal margin, prostheca longs, broadest proximally with paired apical projections, one long and slender with one apical spine seta, the other shorter, curved and blunt, with a sharp opposing looth (Fig. 24j). Right mandible (Fig, 24k): outer inctsors with three large teeth, outer margin with one long tapering spine, inner incisors with two contiguous teeth. prostheca strap-like, long and slender with 2-3 mimute spines on apex, and two long setae near mid region (Fig. 241). Hypopharynx simple, median lobe with a large, bulbous, apical tubercle (Fig. 24h). Maxillae (Fig. 24 m): palpi threc-segmented, longer than galco-lacinia, basal segment long and slender, 3.67 * longer than wide, lined with short tine setac, segment ratios 1.00 : $0.55: 1.09(0.22 \mathrm{~mm}) 1$ abrum (Fig. 24e); palpi threesegmented proximal segment $2.43 \times$ longer than wide, second segment nartow proximatly, broad distally, distal segment shori, broad with concave apical margin, segment ratios $1.00: 0.71: 0.35(0.34 \mathrm{~mm})$,

Fenale Imago

Resembles male, but lacks dorsal turbinate eyes, Body length 7.95 mm , lare wing length 7.45 mm , hind wing length 2.87 mm . Thorax grey, abdomen red-brown. Costal margin of fore wing brown. Fore leg shorter than in male. Sub-arral plate with paraproets lacking spimes.

Female Nomph

Similar to male, lacking dorsal compound eyes, lateral eyes black. Ninth abdominal sternite hind margin square aud lined with spines.

Diggnosfic Characteristics

1. Genitalia, shape of last segment of forceps (Eig. 23 d ; 5 gg .19 c)
2. Hind wing lacks acute costal projection (Fig, 23b).
3. Number of spines on paraprocts of nymplas (Figs 24b, e: Figs 22c; d).
4. Incisors and prostheca of mandibles (Figs 24i-1).
5. Labrum shape (Fig 24e).
f. Saddle-like colour pattern on abdomen (Fig. 23 i) .

Type Locality

Wannon River just above Wannon Falls, near Wannon, Western Victoria, Grid relerence 1:250 000 map series Hamilton Shect: 353482. Collected 30 October, 1977 by P. and A. Suter and A. Wells.

Type Specimens

The holotype male and nymphal type are located in the Muscum of Victoria. Five paratype male imagos and paratype nymphs are also placed in tho Museum of Victoria and five paratype male imagos and nymphs are placed in the South Australian Museum.

Type Habitat

The nympts were found in fast-flowing water about 500 m above the Wannon Falls. Adult males and temales were swarming in the afternoon sun above a grass covered bank about 10 m above the water's edge.

The habitat records of this species in South Australia are quite variable, but may reflect only the season and flow conditions of the streams from which the collections were made. Collections from Kangaroo Island, and Mosquito Creek in South East South Australia during spring, indicated that C. elongalum nymphs oceupied a similar habitat to that observed in Victoria. However, in Carrickalinga Creek on the Fleurieu Peninsula, a collection was made in November 1977 when the creek was in the process of drying, and pools were being formed. It was from one of these stationary Juncus lined pools, that the only record of C. etongatum on the Fleurieu Peninsula, was made. At times of higher water levels and discharge, C. elongatum may be found occupying the faster-flowing waters, rather than the stationary pool habitat recorded in November 1977.

Etymology of Specific Epithet

The specific epithet elongatuin refers to the elongated distal segment of the forceps of the male imago. This long segment distinguishes $C_{\text {e elongatum }}$ from C. collendum Harker, the only other species in this genus described from Australia.

Affinities

Of the diagnostic features, the genitalia and hind wing characteristics clearly distinguish C. elongarum from C. collendum Harker. Harker's (1957) description records that the nymphs of C. collendum have long tarsal claws; "about equal in length to the tarsus itself". C. elongatum has much shorter tarsal claws, being about half the tarsal length. Other differences between the nymphs are not obvious from Harker's deseription, and the nymphal morphotype of ' C. collendum has not been examined.

Material Examined

SOUTH AUSTRALIA. South East: Mosquito Ch. Fleurieu Peninstla: Carrickalinga Ck. Kangaroo Island: Breakneck R., DeMole R,, Rocky R., South West R., Stunsail Boom R., Western R.
VICTORIA. Jimmy's Ck, Mt. Emis Ck, Wannon R.

GENUS CLOEON Leach 1815

Leach, 1815: 137; Eaton, 1868: 87-88; 1871: 102; 1885: 179-181; Klapálek, 1905; 106-107; Ulmer, 1916: 17; 1919: 54; Tillyard, 1926: 64; 1936: 53-55; Harker, 1950: 24, 29; 1954: 266; 1957: 72-73; Scholes, 1961: 38-39; Rivk. 1970: 236.
Type Species: Cloeon dipterum (Linn. Fabr.).

History and Discussion

The genus Cloeon was erected in 1815 by Leach, to include C. dipterum (Linn, Fabr.), Eaton (1868) noted "A species (1 specimen in British Museum) is reputed to be from S. Australia", and in 1885 he included Australia in the distribution of this cosmopolitan genus,

The first confirmed record of Cloeon in Australia was made by Uimer (1916) when he recorded C. virens Klapálek (ancorrectly spelt as C. viridis Klap. by Ulmer and Jater by Tillyard, 1926) from the Kimberley district. N.W. Australia. This species was originally described from Java by Klapalek (1905). A further species C fluviatile Ulmer was described by Ulmer (1919) from New Guinea, and was later recorded at Armidalic (N.S.W.) by Harker (1950), who added the description of the egg.

Tillyard (1936) recorded C. tasmaniue from the Macquarie R., Tasmania, and described the male and female imagos, and the subimago. Harker (1957) described the first Cloeon nymph in her description of C. nandirum from Townsville, Queensland.

The present study recognises one new species, and C. fluviatile Ulmer from South Australia, and the descriptions include the characteristics used by MüllerLiebenau (1969, 1973) in her revision of Buelis. The nymph of C fluvatile is described from South Australian material.

Choeon fluviatile Ulmer 1919

Cloeon fluviatile Ulmer, 1919; 54-57; Harker, 1950: 24, 29; 1954: 266.

The following description is based on one male imago from the Third Spring on the Oratunga Loop, Flinders Ranges, South Australia, collected 9 April 1977 by P. J. Suter.

Body Length	4.12 mm
Notal Length	1.40 mm
Pronotal Width	0.56 mm
Mesonotal Width	0.80 mm
Fore Wing Length	4.32 mm
Cerci Lenglh	8.53 mm
Terminal Filament absent.	

Head; dark brown. Antennae light brown 0.72 mm long. Dorsal eyes turbinate, upper portion yellownbrown, lateral portion lighter brown.

Thorax: brown, notal sutures black. Legs; buff. T_{1} fused in middle and hind tibia, only partially fused in fore tibia. Ratios of leg segments: fore leg $1.00 ; 1.76$: $0.07: 0.68 ; 0.49: 0.27: 0.20(0.82 \mathrm{~mm}) ;$ middle leg $1.00: 0.82:-: 0.28: 0,15: 0.08 ; 0.18(0.78 \mathrm{~mm})$; hind leg $1.00: 0.86:-: 0.26: 0.12: 0.07: 0.19(0.86 \mathrm{~mm})$, Sternum brown (Fig. 25c),

Wings: hyaline. Fore wing (Fig. 25a) length 2.70 ov width, costal and subcostal region opaque, creamcoloured, milky in pterostigmal region, prerostigma with 2-4 cross-veins, no cross-veins in proximal region of costal space, subcostal space without cross-veins.

Abdomen: red-brown with lighi brown median markings on segments 1-7, segments 8, 9, 10 red-brow!̣ (Fig, 25b), Light red-grey ventrally, Cerci long, white with red-brown joints every fourth segment, lerminal filament absent.

Genitalia (Figs 25d-f; 19e): Forceps proximal segment rectangular; length $0.69 \times$ width, sccond segment slender, partially fused with third segment which is long and slender, distal segment short, with a basal stalk and globular apex. Penes covers large and obvious, extending to middle of second segment of forcens, separate, rectangular, apices divergent. Subgenital plate with a posterior brown projection which separates. proximal segments of foreeps.

Malure Male Nymph

Body Length	$5.08-5.60$
Head Width	$1.02-1.08$
Notal Lengli	$1.60-1.74$
Pronotal Width	$0.92-0.98$
Mesonotal Width	$1.38-1.46$
Cerci Kength	$3.50-5,40$
Terminal Filament Length	$1.62-3.80$

Body cylindrical, general colour light brown.
Head: brown. Dorsal compound eyes red-brown. Antennac long, 3 x longer than head width.

Thorax: pronotum width $0.91 \times$ head width, brown with light markings. Mesonorum width $1.35 \times$ head width, uniformly light brown. Legs cream with brown banding, one band on distal $1 / 3$ of femur, one proximally on tibia, tarsus with one proximal and one distal band (Fig. 26a). Tarsal claws long and slender with two ventral rows of peg like denticles (Fig. 26b). Ratios of leg segments: lare leg $1.00: 0.73: 0.63$ (1.01 mm); middle leg $1.00: 0.74: 0.54(1.03 \mathrm{~mm})$; hiind leg $1.00 ; 0.68: 0.53(1.16 \mathrm{~mm})$. Femur length-widih ratios: fore leg 4.87, middle leg 5.01, and hind leg. 5.27.

Abdomen: brown, with dark brown rectangular patches on cach segment, edged with light brown, a central light stripe on each segment (Fig. 26c), Jateral flanges of segments 7-10 lined with spines, 1-2 spines on postero-fateral margins. Posterior margins of tergites. with large single spines, Paraprocts with $16-22$ spines on imner and apical margins, largest spine at apex, smaller mesally (Fig. 26d). Gitls (Fig. 2Ge) with paired lamellae on segments 1-6, single on segment 7, black
branched trachea, margins serrated with short fine bristle in each depression.

Mouthparts: labrum (Fig. 26f) rectangular, $1.94 \times$ broader than long with a U-shaped concavity in centre of anterior margin (Fig. 26g). Left mandible (Fig, 26j); robush, outer iteisors with 3-4 large teeth, inner incisors with $4-5$ teeth, prostheca with three apical denticles and two sharp spines (Fig. 26k). Right mandible (Fig. 261) robust, outer incisors with three apical teeth, inner incisors with three large and one small teeth, prostheca long and slender, mesal margin near apex with two short spines and one small denticle (Fig. 26m). Hypopharynx (Fig. 26n). Maxillae (Fig, 26i) galeolaeinia slender, with three well developed apieal teeth, lined mesally with $12-15$ large spine setae, palpi longer than galco-lacinia, proximal segment 5.83 * longer than wide, segment ratios; $1,00: 0.80: 0.82(0.15 \mathrm{~mm})$, distal segment lacks apical spines. Labium (Fig. 26h); palpi: tength of proximal segment $2,20 \times$ width, apical margin of distal segment concave lined with short spine setac, segment ratios; 1,$00 ; 0,61 ; 0.80(0,22 \mathrm{~mm})$; glossac shorter than paraglossac.

Female Imago

Lacks dorsal compound eyes, lateral eyes black, fore leg shorter than male, otherwise simitar to male imago,

Female Nymph

Similar to male nymph, lacks dorsal compound eyes, lateral eyes black, thorav broad, wider than head.

Diagnostic Characteristics

1. Distal segment of forceps minute, globular (Figs 25d-f; 19c),
2. Turbinate cyes yellow/browh.
3. Incisors and prostheca of lelt and right mandibles (Figs $26 j-m$).
4. Distal segment of maxillary palpi without apical spines (Fig. 26i),
5. Paraproct spination (Fig. 26d).

History and Discussion

C. fluwatile was described in 1919 by Llmer from specimens from New Guinca. Harker (1950) recorded this species from Armidale, New South Wales, and described the egg. Since the type material is held in the Betlin Museum (Ulmer 1919) or the Stockholm Museum (Harker 1950, 1954) il was not available for this study. The South Australian specimens have no features which distinguish them from the speeies described by Ulmer, and until the type material is examined they are placed as C. flwwitile Ulmer.

Material Examined

SOUTH AUSTR.ILIA. MI. Loliy Ranges: Tartens R. Southern Jlinders Ranges; Ohlenmeyer Reservoir,

Rocky R., Wild Dog Ck. Notthern Flinders Ranges: Baleanoona Ck, Bendieuta Ck, Brachina Ck, Elatina Ck, Emu Ck, Eregunda Ck, Kanyaka Ck, Marolana Ck, Mt. Chambers Ck, Parachina Ck, Stubbs Waterhole, Willigan Ck, Creek in Warren Gorge,

Clocon paradieniensis sp. nov.
Holorype Mate

Body Length	7.80 mm
Notal Length	2.96 mm
Pronotal Width	0.92 mm
Mesonotal Width	1.20 mm
Fore Wing Length	7.05 mm
Cerci Lengith	15.73 mm

Head: brawn. Antennae short, $1,02 \mathrm{~mm}$, buff. Dorsal eyes turbinate, yellow dorsally, brown laterally.

Thorax brown, pronotum narrower than head. Legs; white-cream, fore leg longer than middle and hind legs, fore leg femut length $1,06 \times$ middle leg femur length, and equal to hind leg femur length. T of middle and hind legs fused to tibia. Ratios of leg segments: fore leg $\quad 1.00: 1.68: 0.05: 0.70: 0.50: 0.28: 0.18$ $(1.48 \mathrm{~mm}) ;$ middle leg $1.00: 1.01 ;-0,29 ; 0,13 ; 0,06$; $0.16(1.40 \mathrm{~mm})$; hind leg $1.00: 0.99:-: 0.26: 0.12$: $0.06: 0.15(1.46 \mathrm{~mm})$,

Wings: hyaline (Fig, 25 g); $2.89 \times$ longer than wide, veins buff, transparent, pterostigmal region with 3-4 cross-veins, well separated, proximal region of costal space with two cross-veins, sub-costal space with two cross-veins in distal half.

Abdomen: red-brown with a light brown dorsal suipe, segments 8 and 9 dark red-brown, 10 lighter (Fig. $25 \mathrm{~h})$. Cerci long, terminal filament reduced to a vestigial stump.

Genilatia (Figs 25i-k; 19f): forceps proximal segment short and broad; second segment short, narrower than proximal segment, almost fused with third segment; third segmemt long and narrow, bulbous apically; distal segment short and angular, conical. Penes covers broad, extending beyond fusion of second and third segments of foreeps, bluntly pointed, apices divergent,

Malure Male Nymph

Head Width	1.31 mm
Notal Length	1.96 mm
Pronotal Widh	1.15 n 1 m
Mesonotal Width	1.64 n 1 mi
Cerci Length	6.23 mm
Terminal Filament Length	4.59 mm

Body cylindrical, red-brown dorsally, light browñ ventrally.

Head: dorsal compound eyes red-brown (sepia). Antennac long, 4.92 mm , proximal and second segment brown, Ilagellae buff,

Thorax: pronotum width $0.88 \times$ head width, brown with median longitudinal white stripe, Mesouorum width 1.25 head width, brown with light median
longitudinal stripe. Sternum light brown, with little sclerotization. Legs buff without markings (Fig, 27a). Tarsal elaws long and slender, with two ventral rows of peg-like denticles. Ratios of leg segments: fore leg 1.00: 0.67:0.58 (1.44 mm); middle leg $1.00: 0.67$: $0.51(1,56 \mathrm{~mm})$; hind leg $1.00: 0.79: 0.60(1.68 \mathrm{~mm})$. Femur length to width ratios: fore leg 5.18 , middle leg 6.05, hind leg 6.51.

Abdomen: red-brown dorsally, yellow-brown ventrally, without definite colour pattern, overlap of segments darker brown, Lateral margins of segments 7-10 tined with spines, postero-lateral margins with 2-3 spines, posterior margins of tergites with large and small irregularly placed spines, Paraprocts broadly triangular, lined on mesal margin with 27-30 large spines (Fig, 27b). Cerci long, terminal filament shorter. every fourth segment red-brown, giving banded appearance Gills; lameliae paired on segments 1-6 (Fig. $27 e)$, seventh single, margins of gills serrated with a single fine bristle.

Mouthparts: labrum (Fig, 27c) rectangular, 1.5 . broader than long with a deep concavity in centre ol anterior margin (Fig. 27d). Left mandible robust (Fig. 27i), outer incisors with four teeth, inner incisors with 3-4 teeth, prostheca robust with a corrugated apex of $5-6$ rounded teeth and two long spines mesally (Fig. 27j). Right mandible (Fig, 27k) robust, outer incisors with four teeth, inner incisors with two large teeth and two smaller teeth, prostheca robust with apex of 6-8 tooth-like ridges (Fig. 271). Hypopharynx (Fig. 27g) simple, median lobe rounded with a small median bulbous projection. Maxillae (Fig. 27f) galeo-lacinia long and narrow, with three well developed sharp leeth apically, palpi longer than galeo-lacinia, proximal segment $5.33 \times$ longer than wide, segment ratios $1.00: 0.69=0.88(0.24 \mathrm{~mm})$, distal segment fringed with fine setae, and two small terminal teeth. Labium (Fig. 27h) palpi three segmented, length of proximal segment of palpi $2.74 \times$ width, apical margin of distal segment slightly concave, segment ratios $1.00: 0.56: 0.48(0.33 \mathrm{~mm})$; glossac shorter than paraglossae.

Feiriate Imaga

Without dorsal compound eyes, fore legs shorter than male. Fore wing: costal and subcostal spaces shaded with red-brown twelve cross-veins in costal space. Body colour red-brown.

Female Nymph

Similar to male, lacks dorsal compound eyes, lateral eyes black, thorax broader than male, pronotum wider than head.

Diaghostic Characteristics

1. Distal segment of forceps conical shape (Figs 251 k; 19f).
2. Turbinate eyes yellow.
3. Female with costal and subcostal spaces shaded red-brown.
4. Incisors and prostheca of left and right mandibles (Figs 27i-1).
5. Paraproct spination (Fig. 27b).
6. Maxillary palpi with terminal spines on distal segment (Fig. 27f).

Type Locality

Little Para River at Paracombe, Mt. Lofly Ranges, South Australia, Grid Reference 1:250000 map scries, Adelaide Sheet: 179695. Collected 20 October, 1976 by J. H. Diener and P. J. Suter.

Type Specimens

Holotype male and nymphal type and allotype female are located in the Muscum of Victoria. This short type scries is because this species is only known from two collections from the type locality, and one is the drain system of the South East. Further material has not been collected.

Tipe Habital

The nymphs were found in a non-flowing pool system in a culvert beside the Paracombe road. The pool was overgrown with Nasturtimm sp. and Lemna sp. Adults were raised in the laboratory from mature nymphs collected from the type locality.

Etymology of the Specific Epithet

The specific epithet paradieniensis refers to the river (Little Para River), and is in recognition of J. H. Diener whose collection from the Little Para River was the first of this species.

Affinities

Cloeon paradieniensis resembles all the described Australian species, but it can be readily distinguished by the conical shaped distal segment of the forceps of the malc imago. The nymph can only be compared with C. nandirum Harker and C. fluviatile Ulmer, the only Australian species associated with their nymphs. The shape of the labrum elearly distinguish the nymphs of

TABLE 3. TABUI.ATED COMPARISON OF ALL DESCRIbED SPECIES OF CLOEON IN AUSTRALIA - DATA COLLECTED FROM THE PRESENT STUDY AND FROM PUBLISHED DESCRIPTIONS BY K'LAPÁLEK (1905), ULMER (1919), TILLYARD (1936) AND HARKER (1957)

Character	Clocon fluviatile	C. paradieniensis	C. mandirum	C. virens	C. tasmaniae
Mate Imago					
Body length (mm)	4.12	7.80	7	6	7
Fore Wing length (mm)	4.32	7.05	4	6	6
Fore Wing width (mm)	1.60	2.44	1.6	2.27	2.4
Cerei length (mm)	8.53	15.73	-	11-12	12
Eye colour	Sepia	Yellow	Orange	-	Buff-pink
Pierostigmal cross-veins	2-4	3-4	5	4.5	5
C/Se basal cross-veins	0	2-5	0	6	-
Sc/R eross-veins	0	2-6	0	7	-
Costal colouration	Milky	Milky	Mitky	Emerald Green in females.	Cream
Genitalia					
Forceps, terminal segment	Short and narrow	Triangular	Long and narrow	Short and narrow	Globular
Penes covers	Rectangular, Tlat apically	Pointed apically	?	?	?
Nymph					
Body length (nmm)	5.08-5.60	-	6	Unknown	Unknown
Head width (mm)	1.02-1.08	1.31	-		
Cereil length (mm)	3.50-5.40	6.23	-		
Terminal filament length	1.62-3.80	4.59	-		
Legs	Banded	Not banded	Not banded		
Lell Mandibles					
Outer incisors	3-4 reeth	3-4 teeth	-		
Inner incisors	4-5 leeth	5-6 teelh	-		
Prostheca	3 denticles + 2 sharp spines	$5-6$ (ceth + 2 long spines	-		
Right Mandihles					
Outer incisors	3 teeth	4 leeth	-		
Inner incisors	3 large, 1 small	2 large, 2 small	-		
Prosiheea	Long and slender, 2 short spines + I denticle apically	Robust, 6-8 tooth-like ridges	-		
Maxillary palpi	No terminal teeth	2 terminal leeth	-		

C. paradieniensis and C. nandirum, but as the tyne niaterial is in the British Muscum, and the description given by Harker (1957) was not comprehensive enough, no further character comparisons are possible.

The nymphs of C. paradientensis can be distinguished from C. fluviatile Ulmer jnitially by size, the latter species being less than 6 mm , the former greater than 7.5 mm . The number of spines on the paraprocts, the lack of bands on the femora, spines on the distal segment of the maxillary palpi, and the shape of the prostheca of the fight mandible also distinguish the two species lound in South Aussralia, Tabulated compratisons of all Australian Cloeon species is given in Table 3, with data taken from the present study, and from published descriptions by Rlapalek (1905), Ulmer (1919). Tillyard (1936) and Harker (1957).

FAMILY SIPHLONURIDAE

A full revision of this Eamily is at present being prepared by DH I. Campbell, Chisholm Institute of Technology, Victoria.

GENUS TASMANOPHLEBIA Tillyard 1921
Tillyard, 1921: 409-412; 1926: 62; 1933: 12-13; 1936: 27; Lestage, 1935a: 132; 1935b: 350-353 (in part as Tasmanophlebioides); Harker, 1950; 29; 1954; 267; Riek, 1955: 268-269; 1970: 235; Scholes, 1961: 21-23. Type Species: Tasmanophlebia lacustrus.
As mentioned above, Dr I, Campbell is revising the Siphlonuridac and therefore material of the single species of Tasmanophlebia recorded in South Australia has been forwarded to him for comparison with other Australian species. No specific designation has been made for the South Australian species.

Tasmanophlebia sp.

The following description is of one male imago from Tookayerta Creek, Fleurieu Peninsula, South Australia. Adult specimens are tare in collections from South Australia, and for this reason the mean, ranges and standard deviations are based on only three animals.

Male Imago

	\bar{x}	$S L$	n	Range
Body Length	10.40	1.03	3	$9.40-11.46$
Fore Wing Length	9.54	0.90	3	$8.53-10.26$
Fore Wing Width	2.90	0.43	3	$2.42-3.25$
Hind Wing Length	4.53	0.61	3	$3.86-5.06$
Hind Wing Width	2.51	0.26	3	$2.23-2.74$
Corci Length	4.71	(other cerci damaged)		
Terminal Filament Length	0.24	0.14	3	$0.08-0.32$

Head: light brown. Dorsal region of compound eyes burgundy.

Thorax: brown. Fore leg dark brown, longer than middle and hind legs, fore leg femur lengh $2,11 \times$ middle leg femur length and $1.87 \times$ hind femur length. Middle and tind legs light brown, first tarsal segment
fused to tibia. Ratios of leg segments: fore leg 1.00: $0.67 ; 0.63: 0.47: 0.52: 0.47=0.28(2.24 \mathrm{~mm})$; middle leg $1.00: 0.84=-: 0.17: 0.17 ; 0.14: 0.29(1.06 \mathrm{~mm}) ;$ hind leg $1.00 \div 0.80 \div-0.17: 0.17: 0.12: 0.28$ $(1.20 \mathrm{~mm})$.

Mings: fore and hind wings hyaline, tinged with yellow; veins brown. Fore wing (Fig. 28a) $3.31 \times$ longer than wide, costal and subcostal region shaded with brown, radial and proximal regions ol median, cubial and anal veins tinged with yellow. Hind wing (Fig. 28b); $1.79 \times$ longer than wide, half as long as forewing, subcostal space shaded with brown, costal, subcostal and proximal regions of the radial and anal veins linged with yellow.

Abdomen: brown, speckled with black, segments 8 and 9 with median black stripe and two convex lateral stripes, scgment 10 black (Fig, 28c). Cerci long, dark brown, terminal filament vestigial, of $1-4$ segments.

Genitatia (Figs 28d, e; 30a, b): forceps threcsegmented, subgenital plate broad forming forceps base, proximal segment very long and narrow, middle segment shorter, but elongated, distal segment just shorter than middle, rounded apically. Penes long, tharrow, extending to mid proximal segment of forceps, lobes Lubular, almost fused, rounded at apices.

Mature Male Nymph (Fig. 28g)

	\bar{x}	$S D$	n	Range
Head Width	$17!$	0.12	6	$1.52-1.84$
Body Length	12.64	1.00	4	$11.18-13,40$
Notal Length	2.91	0.21	6	$2.58-3.20$
Pronotal Width	1.77	0.12	6	$1.58-1.88$
Mesonotal Width	2.26	0.15	6	$2.00-2.44$
Cerci Length	5.09	0.29	3	$4.71-5.41$
Terminal Filament Length	4.68	0.13	3	$4.52-4.83$

Colour mottled sandy brown.
Head: small, light brown, Compound eyes large, redbrown dorsally, black laterall. Antennac 1.30 mm long.

Thorax: pronotum as wide as head, monled greybrown. Mesonotum width $1.32 \times$ bead width, mottled brown. Legs yellow-brown, femora with a brown patch on posteriot margin, joints of tibia and tarsi dark brown, tarsi with brown bands along length, equivalent to tarsal segments of adult (Fig. 29a). Tarsal claws long and slender 0.50-0.71 \times length of tarsus, smooth without denticles. Ratios of leg segments: fore leg $1.00: 0.46: 0.85(1.25 \mathrm{~mm}) ;$ middle leg $1.00: 0.41:$ $0.67(1.30 \mathrm{~mm})$, hind leg $1.00: 0.44: 0,74(1,32 \mathrm{~mm})$) Femut length to width ratios similar, fore leg 3.44. middle leg 3.25 , hind leg 3.56 .

Abdomen: dorso-ventrally flattened, with medial dorsal crest of curved posteriorly directed projections on segments 1-7; process on segment 1 small, 2, 3, largest, becoming less prominent 5 rom segment 4.7 (Fig. 28g). Lateral flanges of each abdominal segment semi-transparent, postero-lateral margin sharply produced. Paraprocts separate, smooth, developing
forceps large (Figs 22c, f). Gills; on segments 1-4, first pair broadly ovoid, opereulate, other three pairs with paired lamellae, transparent, with well-developed gill lamellae lined with fine setae (Figs 29b-e).

Mouthparts: labrum (Fig, 29f) rectangular, length $0.44 \times$ width, anterior margin smooth (Fig. 29g), Left mandible (Fig. 29k) rabust, incisors widely separate, outer group with three apical teeth, and a ventral row of short setae, inner incisors with three apical teeth and a row of short setae, prostheca broad at base, anterior margin tapers to form a long narrow projection with 3-4 short spines (Fig. 291). Right mandible (Fig. 29m) robust incisors widely separate, outer group with two apical teeth, and a ventral row of shorl selae, jnner incisors with three apical teeth and a ventral row of short sctac, prostheca broad at base, curved, apex divided into two separate lobes, posterior lobe largest (Fig. 29n). Hypopharynx (Fig. 29i): median lobe deeply bitid. Maxillae (Fig. 29j); apical angle of galeo-lacinia with three or four spine setae, palpi three segmented, longer than galeo-lacinia, segment ratios; $1.00: 0.86$: 0,77 ($0,35 \mathrm{~mm}$). Labium (Fig. 29h): palpi threesegmented, length of proximal segment $1.3 \times$ width, segment ratios; $1.00: 0.86 ; 0.51(0.37 \mathrm{~mm}) ;$ ghossae with one small pointed tubercle distally.

Diagnostic Characteristics

1. Genitalia; shape of forceps and penes (Figs 28d, e; 30a, b).
2. Dorsal crest of nymph with curved posteriorly directed projections on abdominal sogments 1-7 (Fig. 28g).
3. First abdominal gill ovoid, rounded posteriorly (Fig, 29b).
4. Lateral flanges of abdominal segments narrow.
5. Shape of incisors and prosthecae of mandibles (Figs $29 \mathrm{k}-\mathrm{m}$).

Material Examined

SOUTH AUSTR ALIA. Fleurien Peninsula: Tookayerta Ck, Yankalilla R.
VICTORIA. Gatvkers Ck, Stokes Ck.

FAMILY CAENIDAE

The Caenidae was recognised as a distinct group of mayflies by Eaton (1883) when he included the genera. Tricorythus, Leptohyphes and Cuents in Section 7 of his Revisional Monograph. Banks (1900) erected the tribe Caenini and Thew (1960) states that "according to the Copenhagen decision of the International Commission on Zoological Nomenclature, Baoks should be credited with the authorstip of the family."

Lestage $(1930,1938)$ reters to the Caenidae as the Brachycercidae, but with the exception of Demoulin (1955b), the Brachyceridae has not been recognised by authors working on the Austratian Ephemeroptora, Tillyard (1936), Harker (1950, 1954, 1957). Thew (1960),

Riek (1970), Soldan (1978) and Suter (1979, 1984) have all recognised the family Caenidae.

In 1978 Soldan deseribed a new genus of caenid from Australia (Pseudocuenis) from nymphal material only, but Suter (1984) demonstrated that this genus was a synonym of Tasmanocoenis.

GENUS TASMANOCOENIS Lestage 1930

Putbz, 1975: 412; Soldan, 1978: 128: Suter, 1979: 82; Suter, 1984: 105.
Type Species: Tasmanocoenis tonnoiri.
The genus Tasmanocoenis has been reviewed by Suter (1984) and further discussion is not included here. In the present study all caenid naterial from South Australia was Tasmanocoenis tillyardi (lestage).

Tasmantocoenis tillyardi (Lestage) 1938

Caenis scoth, Tillyard, 1936: 56-58; Coenis tiltyardi Lestage, 1938: 320; Caenis scotti Harker, 1950: 24-26. 29: Caenis tillyardi Harker, 1954: 266; Tasmanocoenis rillyardi Demonlin, 1955b: 4; Harker, 1957: 77; van Bruggen, 1957: 33; Thew, 1960: 202; Scholes, 1961: 39-41: "Caenis" scotti Williams, 1968: 169.

Male Imago

	\bar{x}	SD	n	Range
Body Length	3.25	0.14	7	$3.12-3.52$
Notal Length	1.45	0.07	7	$1.32-1.52$
Pronotal Width	1.68	0.06	7	$0.55-0.72$
Mesonoral Width	0.84	0,08	7	$0.67-0.90$
Fore Wing Length	3.15	0,14	7	$2.96-3.36$
Cerci Length	11.30	-	-	-
Terminal Filament I ength	12.00	-	-	-

Colour dark black-brown.
Headi brown, with light brown epicranial surures, Compound eyes lateral, black. Antonnal base brown, one-segmented, flagellae long, 0.54 mm .

Thorax: robust, dark black-brown (Fig. 31b). Pronotum narrower than head. Mesonotum wider than head. Legs slender, pale brown-grey; fore legs longer than middle and hind legs, fore leg femur L. 15 * middle leg femur length and $1.28 \times$ hind lemur length. Ratios of leg segmeats: fore leg $1.00:$ L.93:0.09: $0.57: 0.26: 0.25: 0.16(0.69 \mathrm{~mm})$; middle leg 1.00 : $0.55: 0.08: 0.05: 0.05: 0.07: 0,08(0.60 \mathrm{~mm})$; hind leg $1.00: 0.61: 0.08: 0.05: 0.05: 0.07: 0.08$ (0.54 mm). Tarsal claws similar in fore leg, hoth blunt, club-shaped, dissimilar in middle and hind legs, one blunt club-shaped, one slender and sharp. Sternum (Fig. 3lc): prosternum triangular, apex truticated, lateral margins separated anteriorly, slighty longer than broad. Mesosternum dark black-brown, basisternum lengih $1.19 \times$ maximum width, stema-costal suture well develoned, furcaslernum length $0.65 \times$ width, and $0,65 \times$ basisleruum length, posterior margin straighe. Wings (Fig. 31a): shon and broad, length $1.72 \times$
width, hyaline with milky-opaque pterostigma, venation reduced, simple, almost lacking cross-veins, posterior margins may be lined with fine setae.

Abdomen: short, cylindrical, segmenrs $3-5$ very short, light brown, and speckled with black, segments 8 and 9 lighter. Cerci long, transparent, terminal filament longer, both tipped with long fine setae.

Genitalia (Figs 31d; 30c); forceps one-segmented, bowed, sharply pointed with ventral mesal groove, penes lobed, fused with a small apical indentation, sclerotized basally.

Mature Mate Nymnh (Fig, 3le)

	\bar{x}	$S D$	n	Range
Head Width	0,96	0.04	21	$0.90-1.04$
Notal Length	1.62	0.10	21	$1.40-1.76$
Pronotal Width	1.00	0.06	21	$0.78-1.04$
Mesonotal Width	1.14	0.05	21	$1.00-1.20$
Cerci Letigth	3.03	0.16	3	$2.92-3.22$
Terminal Filament Lenglh	3,39	0.78	3	$3.28-3.60$

Body colour brown.

Head: datk brown. Antennae light brown, basal segment 0.16 mm long, flagellum 1.46 mm (Fig. 32e). Tentarial body rectangular, length $0.79 \times$ width.

Thorax: pronotum brown, lateral Clanges lighter, semi-transparent, anterior margins with spine setae, $0.96 \times$ wider than the head. Mesonotum dark brown. Legs light brown, margins lined with spine setae (Fig, 32a). Tarsal claws short, curved with 4-6 small ventral denticles, otherwise smooth. Ratios of leg segments: fore leg $1.00 ; 0.73 ; 0.65(0.68 \mathrm{~mm}) ;$ middle $\operatorname{leg} 1,00: 0.70: 0.59(0.68 \mathrm{~mm})$; hind $\operatorname{leg} 1.00: 0.76:$ $0,60(0,74 \mathrm{~mm})$. Feniur length to width ratios: fore leg 2.81, middle leg 2.86, and hind leg 2.95.

Abdomen: brown, with square patterns of brown on each side of median line. Operculate gill of second segment covers segments $3-5$, segment two with median backward-projecting spine, poslero-lateral margins produced forming backward pointing projections. Cerci and terminal lilament dark brown, well developed. Gills; on segments $1-6$, first pair single, filamentous with indistinct segments, lined with fine selae (Fig, 32b), second pair operculate with raised triangular region dorsally, mesal ridge with few setae, outer ridge not reaching posterior margin of gill covers, margins lined with long setac (Figs 32c; 30d); thirdsixth paits laminate with $40-50$ tracheal fringes, single or bilid, few trifid, third gill largest (Fig, 32d),

Mouthparts: labrum (Fig. 32f) reetangular, width 2.34 \& length, anterior margin with slight median concavity with 2-3 small denticles (Fig, 32g), Left mandible (Fig. 32j): outer incisors with three apical teeth and one shorter mesal tooth, inner incisors with three apical teeth, prostheca robust with apical brush of setae (Fig. 32k). Right mandible (Fig. 321); outer incisors with 2-3 apical teeth, inner with two, prostheca robust with apical brush of serae (Fig, 32 m). Hypo-
pharynx (Fig. 32i) with square median lobe, slighily concave anteriorly. Maxillae (Fig. 32n): galeo-lacinia short and narrow, with 3-4 robust apical spines, mesal margin lined with stout spine setac, palpi threesegmented, longer than galeo-lacinia, segment ratios $1.00: 0.70: 1.07(0.12 \mathrm{~mm})$, Labjum (Fig, 32h): palpi three-segmented, proximal segment length 1.47 x width, segment ratios $1.00 ; 0.78: 0.53(0.13 \mathrm{~mm})$; glossae rectangular.

Female Imago

Similar to male, sternum and notum broader, tarsi fout segmented, tarsal claws, each pair dissimilar, one blunt, club-shaped, one curved and sharp.

Female Nymph

Body shape similar to male, more robust than male, i.e. head width of last instar greater than male, wing sheaths longer, second abdominal operculate gill longer, covering segments 3-6, fore, middle and hind femora langer.

Diagnastic Characterlstics

1. Genitalia of male with curved sharp foreeps and fused penes with a small apieal indentation, not extending beyond apices of forceps (Figs 31d; 30c).
2. Labrum rectangular ($\mathrm{Fig}, 32 \mathrm{O}$),
3. Structure of mandibles, incisors and prosthecae (Figs 32j-m).

History and Discussion

Tillyard (1936) described Caenis scofti from the South Esk River at Clarendon, Tasmania. Lestage (1938) noted that C. scotli was preoccupied by a species described by Ulmer in 1924 (referred to by Thew, 1960) and renamed the Tasmanian species Coenis tillyardi. Harker (1950) apparently was unaware of this namealteration and described a nymph which she assigned to Caenis sconti. Subsequently in 1954 she recognised the name change, and maintained the generic recognition as Caenis. Demoulin (1955b) reviewed the genus Tasmanocdenis and recognised that Caenis Illyardi belonged in the genus Tasmanocoenis, an observalion validated by the review of the Caenidae by Thew (1960))
Williams (1968) noted that Caenis and Tasmanocoenis in Australia were probably synonymous, and illustrated gills of "Caenis" sentri after Harker (1950). Riek (1970) noted, as had Demoulin (1955b) and Thew (1960), that Tasmanocoenis was the only Australian genus in the Cachidac but records of nymptes of Caenis sp. were made by Timms (1974) in a benthic study of three South Ausrralian voleanic lakes. This record and all others from South Australia belong to the one species, T. tillyardi.

Material Exammed

SOUTH AUSTRALIA. South East: Drain L, Drain K, Eastern Division Diversion Drain, Eight Mile Ck, Hitchcock Drain, Mosquito Ck, Mt. Hope Drain, Sutherland's Dtain. Mt. Lolty Ranges: Deep Ck, Eleanor R., Sturt R., Torrens R., Waite Institute Pond. Fleurieu Peninsula: Anacotilla Ck , Carrakalinga Ck , Deep Ck, Hindmarsh R., Inman R., Kangarilla Ck. Lake Alexandrina: Tookayerta Ck , Yankalilla R , Kangaroo 1sland: Breakneek R., Cygnet R., Grassy/Sheep Ck, North-East R, Tin Hut/Bullock Ck, South West R., South West Bay R. Southern Eliaders. Ranges. Broughton R., Nectar Brook Ck, Ohlenmeyer Reservoir, Rocky R., Schumacher Ck, Spring Ck. Northern Flinders Ranges: Arkaba Ck, Arkaroola Ck, Baleanoona Ck, Bendieuta Ck, Brachina Ck, Bunyeroo Ck, Elatina Ck, Emu Ck, Enorama Ck, Eregunda Ck, Hot Springs (Paralana), Kanyaka Ch. Marolana Ck, Mount Chambers Ck, Nepouie Ck, Old Wirrealpa Springs, Oraparina Ck, Oratunga Ck, Parachilna Ck, Stubbs Waterhole, Willigan Ck, Teatree Ck, Warren Gorge C, Wilpena Ck, Wockerawirra Ck, Woodendimna Ck. Eyre Peninsula: OId Woolshed Dami.
VICTORIA. Crawford R., Darlots Ck, Gawkers Ck, Glenelg R., Lake Wendouree (Ballarat), Mount Emu Ck, Pigeon Hole Ck, Rocklands. Reservoir, Stoke Ck, Surtey R., Wando R., Wamon R., Wernicott R. IASMANIA. Elizabeth R., Lagoon of Islands, Macquarie R., Rileys Creek Reservoir, Geeveston.

ACKNOWLEDGMENTS

This work was supported by a Commonwealth of Australia Post Graduate Research Award and by research funds of the Zoology Department, University of Adelaide. Special thanks must go to my supervisor, Dr J. E, Bishop for his valuable advice encouragement, and constructive criticism throughout this study. Thanks also co Prof, W, D, Williams for his encouragement and guidance, and to all people who assisted in collecting material from throughout South Auscralia. 1 would also like to thank my wife, for her support during the study.

REFERENCES

BANKS, N, 1900. New genera and species of Nearctic Neuropteroid inoects Dions. Am. Entomot, Soc; 25: 239-259.
BURMEISTER, H. C. C. IB39. Handbuch der Enlonologie, Vol. 2. parl 2, Neuroplera. Reimer, Betlin. 757-1050.

DEMOULIN, G. 1955 a , Note sur deux nouveaus genres de 「epraphleblidae d'Australie. Fudl. Alln. Soc. R. Belp Emomot 91: 227-229
DEMOULIN, G. 1955b. Les Brachycercidac Austrations. Le genre Tasmanocoenis Lestage. Bu/l. Mirs. R. HisL NaL. Be gh 35: 1-7.
EATON, A. E. 1868. An outline of a re-arangement of the genera of Epliemeridue Em. Mot, Mag. 5: 82-91.
EATON, A, E. 1869. On Centrontilum, a new genus of the Ephemetidae, Entombl, Mori. Mus 6, 131-132,
EATON. A. E. 1871. A monograph or the Ephemeridae. Trums, R, Enloraol. Sos: London 19: 1-164.
EATON, A.E. [R8]. An anmouncement of the new genera of the Ephernetidae Enomol. Mon. Mos. 17: 191-197.

EATON, A. E. 1883-1888. A revisional tienograph of recent Ephemendac or mayllics. Trans Limh. Soc. London rZool. Ser. 2. 3, 1-352.

EDMUNDS, G. E. Jo. 1473. Some critical problems of Family relationsbips in the Ephemeroptera. In "Proosedings of the lsit International Conference of' Ephemeroptera" (Peters. W. L_ and Peters, J. G., eds.), pp. 145-154. E. J. Brill, Leciden.
FDMMUNDS, G, F, 1: 1975. Phylogeneve biogeogeaphy of mayfies. Amm. Mo. Bol. Gard. 62; 251.263.
EDMUNDS, Gi F. Ir., JENSEN, S. L., \& BERNER, I. 1976. The Mayfles of Nonth and Central America, Universiry of Mimesota Press, Minneapolis
HARKER, J. E. 1950. Australian Ephemeroptera. Earl J. Taxonomy of Bew South Wales species and evaluation of laxonomic featares. Proc; Linh. SoL; N.S.W. 75: 1-34,
HARKER, i, E. 1954. The Ephemeroprera of Ausaralia. Trans. R_{1} Entomal. Soc. London. 105 241-268.
HARKER, J. E. 1957. Some new Ausiralian Ephemeroptera. Proc. R. Entomol. Soc. London. Ser, E. 26: 63-78.

HUDSON, G. B. 1951. Studics in the comparative anatomy and systematic importance of the hexapod lentorium - IV. Ephemeroptera. 1. Entomol. Soc. South A/r. 14; 3-23.
KIMMINS, D, E. 1960. The Ephemeroptera types of species deacribed by A. E. Eaton, B. MeLachlan and F. Walker, with particular reference to those in the Bratish Museum (Natural History). Bull. Br. Mus. (Nut. Hist,) Entumat. 9: 269-318.
KLAPALEK. F 1905. Plecopuren and Ephemeriden aus Iava. Naturhist. Mus. Hamburg. 22: 103-107.
LANDA, V. 1977. A contribution to the evolution af the Order Ephemeroptera based on comparalive anatomy, In "Proceedings of the lst Internariona) Conterence an Ephemeroptera" (Peiers, W. L., and Peter, I. G., eds.) pr 155-159. E. I. Brill, Lciden.

LEACH, W. E. 1815 . Entomalagy. In Brewster's Edinburgh Encyclopuedia (1830) 9: 57-172.
LESTAGE, J. A. 1930, Notes sur le premier Brachycercidien decouver! dans la faune alstralieune Tasmanocoenis toomwiri sp. noy. (Ephemeropmera) et remarques sur la famille des Brachycercidae Lest. Mon. Soc. R. Belge Entomol. 23: 49-60.
LESTAGE, j, A. 1931, Contribution a l'óude des Ephéméroptéres VIII, Les Ephéméropléres do Chíli, Butl. Anm, Sos. R, Belge Eniomol. 71: 41-60.
LESTAGE, d. A. 1935a, Contribution à l'éude des Ephèméroptéres IX Le groupe Siphlanuridien. Bull. Awn. Sac. R Belge Entomol. 75: 77-139.
LESTAGE, I. A. 1935b Contribution à bétude des Ephéméroptéres XII. Les composantes austfalienres el neo-telandaises du Groupe Siphlonuridien. Bull. Añ. Soc; R. Belge Enlambl 75: 346-358.
IESTAGE, I. A. 1938. Contribution à l'éfude des Ephéméropteres XX. Notes synonymique; Coens sconi Till (1935) nec Thmer (1930) - Coenis tillyarde nom nov. Bull Anh. Soc. R. Betge Entomul. 78: 320,
MüLLER-LTEBENAU, 1, 1969, Revision der europajschen Arten det Gaitung Baevis Leach, 1815 (Insecta, Ephemeropiera). Gewicsser 48 wasser $48,49.1-214$.
MULLER-LIEBENAU, 1. 1973. Morphological characters used in revising the European speeies of the genus Roetis Leach In "Eroccedings of the Ist International Couference on Ephemeropters" (Peters, W. L., \& Peteis, J. G., Eds.), pp. 182.198. E. . . Brill, Leiden.

NAVAS, R, P. L, 1918. Insectos chilemos. Bot. Soc Aragonesa Cienc. NaI. 17: 212-230.
NAVis, R. P. 1. 1924. Insectos Neotropici. 1. Serié Rev. Chilena de His\%. Nal. 29: 305-313.
NEEDHAM, 5. G. \& MURPHY, H, E, 1924, Neouropical may llies. Fiull. Lloyd Lib Mus. 24 Entomol. Ser 4: 1-79.
PESCADOR, M. L. \& PETERS, W. L. 1985. Binsystemanics of the Genus Nemsia from Southern South Anserica, (Eplemeroptera: Leptopblebidac: Ntaloptilebiinael I. Kansas. Emomol. Soc. 58(7): 31-123.
PETERS, W, L, \& EDMUNDS, G, F. Jr, 7964, A revision of the generic classilication of the Erthopian Leplophlebidac (Ephemeroprera). Jians, R, Entomal. Soc, London 116; 225-253.
PETERS, W, L, \& EDMUNDS, G. F. Jt; 1970. Revision of the generic classification of the eastern hemisphere leptophlebtidae (Ephemeropiera): Pac Insects 12: 157-240.
PETERS, W, \& \& KDMUNDS, Gi E. \&r. 1972. A revision of the generic slassification of certain Leptophtebidas from South Amenca (Ephemereplera) Ann. Enlomol Soc: Alts 65: 1398-1414.
PCTET, F. J. 1843. Hisfoire Natiredle Generale er Particaliere des lesecses Nevmpleres, Familte des Epheinérines, Geveve and Paris.
PUTHZ V. 1975. Eine Caenidengatiung aus dem Amazonasgebiel (Insecta; Eptiemeromela; Cacnidac). dmozontona 3: 411-415.

RIEK, E, F. 1970. Ephemeroptera (Mayllies). In The Insects ol Australia (sponsor C.S.l.K.O.), pp. 224-240. University of Melbourne Press, Melbourne.
RILK, E. F. 1973. The Classification of the Ephemeroptera. In "Proceedings of the 1 st International Conference on Ephemeroptera" (Peters, W. Lr, and Peters, J. G., eds.), pp. 160-178. Leiden: E. J. Brill.
SCHOLES, D. 1961. Fly-Fisher in Tasmania. Melbourne University Press. Melbourne.
SOIDAN, T. 1978. New genera and species of Caenidae (Liphemeroptera) from Iran, India and Australia. Acta Entomol. Bohemosto: 75: 119-129.
SUTER, P. I. 1979. A revised key to the Australian genera of mature mayfly (L'phemeroptera) nymphs. Trans. R. Soc. S. Aust. I03: 79-83.
SUTER, P. I. 1984. A re-description of the genus Tasmanocoenis Lestage (Ephemeroptera: Caenidae) from Australia. Truns. R. Soc S. Aust. 108: 105-111.
THEW, T. 13. 1960. Revision ol the genera ol the Iamily Caenidac (Ephemeroptera). Trans. Am. Entomol. Soc. (Philudelphia) 86: 187-205.
TIL.LYARD, R. J. 1921. A new genus and species of May-Fly (Order Plecloptera) Irom Tasmania, belonging to the Family Siphtonuridae. Proc. Limn. Soc. N.S.W. 46: 409-412.
TILLYARD, R, J. 1926. Order Plectoptera (or Ephemeroptera) (Mayflies) In "The Insects of Australia and New Zealand". Angus and Robertson, Sydney.
TILLYMRD, R. J. 1932. Kansas Permian insects. Pi. 15. The Order Plectoptera. Am. J. Sci. Ser. 5. 23: 97-134; 237-272.
TII IYARD, R. J. 1933. The mayllies of the Mount Koseiusko region. 1. (Plectoptera). Inıroduction and Family Siphlonuridae. Proc, Linn. Soc: N.S.W. 58: 1-32.
TILLYARD, R. d. 1934. The trout-food inseets of Tasmania. Part 1. A study of the genotype of the maylly genus Atalophlebia and its life history. Pap. Proc, R. Soc. Tasmania 1933: 1-16.

TILIYARD, R. J. 1936, The trobllood insects of Tasmania. Part 11. A monograph of the mayflies of lasmania, Pop. Proc: R. Soc. Tusmania 1935: 23-59.
TIMMS, B. V. 1974. Morphology and bent hos of three volcanic lakes in the Mt. Gambier district, South Australia. Aust. It Mar. freshw, Res, 25: 287-297.
TRAVER, J. R, 1946. Notes on neotropicil mayflies. Part I. Family Baeticlac, sub family Leptophlebiinac. Rev: Entomol. 1 Rio de J.) 17: 418-436.

TSUI, P. T. P. \& PETERS, W. L. 1972. The compararive morphology of the thorax of selected genera of the Leptophlebidate (Ephemeroptera). J. Zool. 168: 309-367.
TSIU, P. T. P. \& PETERS, W. L. 1975. The comparative morphology and phylogeny of certain Gondwanian Leptophlebiidac based on the thorax, tentorium, and abdominal terga (Ephemeroptera). Trans. An. Entomol. Soc. (Philadelplia) 101: 505-595.
ULMER, G. 1908. Trichopterae and Ephemeridac. Fauna ShdwestAusitraliens II. 25-46.
ULMER, G. 1916. Results of Dr E. Mjöberg's Swedislı Scientific Expedition to Australia 6. Ephemeroptera, Ark: Zool. 10: 2-18.
ULMER, G. 1919. Neue Ephemeroptera. Arch. Naturgesch 85: 1-80.
ULMER, G. 1920, Uebersicht ïber die Gattungen der Ephemeroptera nebst Bemerkungen über einzelne Arten. Stetl. Ent. Zig. 81: 97.
ULMER, G. 1938. Chilenische Ephemeroptoren, hauptachlich aus dem Deutschen Entomologischen Institut, Berlin-Dahlem. Arh. morph. taxon. Ent. 5: 85-108.
VAN BRUGGEN, A. C. 1957. On two species of maylies lrom the Wissel Lakes Central New Guinea (Ephemeroptera). Noru Guinea, n.s. 8: 31-39.
WALKER, F. 1853. Catalogue of the Species of Neuropterous Insects in the Collection of the British Muscum. Parr III, pp. 533-585. British Museum (Natural History), London.
WILLIAMS, W. D. 1968. "Austratian lireshwater I.ife: The Invertebrates of Australian Inland Waters". Sun Books. Melbourne.

FIG. 1. Atalophtebia austrulis, a-d, male imago: a, fore wing; b, hind wing; c. genitalia, ventral view; d, genitalia, lateral view. $\mathrm{c}-\mathrm{f}$, female imago: c, abdominal segments $7-10$, ventral view; f, abdominal segments 7-10, lateral view. g-i, male imago: g, fore claws; h, dorsal abdominal colour pattern; i, ventral abdominal colour pattern. Scale line: $a-f, h-i, 1 \mathrm{~mm} ; \mathrm{g}, 0.1 \mathrm{~mm}$.

116. 2. Aldophebia custralis, mature nymph: a, lore leg; b, fore claw; c, third abdominal gill; d, labrum, dorsal view; e, intero-median emargination ol labrum, enlarged; \hat{f}, hypopharyox; g, labium, dorsat (left) and ventral views; h, left mandible, ventrat view; i, left incisors and prostheca, enlarged; j, right mandihle, ventral view; k, right incisors and prostheca, enlarged; I, right masilla, ventral view. Scale lines: a, c, d. f. g, h, j, l, 0.5 mm ; b, c, i, k, 0.1 mm .

FIG. 3. Atalophtebia australasica. a-d, male imago: a, fore wing; b, hind wing; c, genitalia, ventral view; d, genitalia, lateral view, e-f, female imago: e, abdominal segments $7-10$, ventral view; f, abdominal segments 7-10, lateral view. g-i, male imago: g, fore claw; h. dorsal abdominal colour pattern; i, ventral abdominal colour pattern. Scale line: $a-f, h-i, 1 \mathrm{~mm} ; \mathrm{g}, 0.1 \mathrm{~mm}$.

FIG. 4. Alalophtebia austratasica, mature nymph: a, fore leg; b, fore claw; c, third abdominal gill; d, labrum, dorsal view; antero-median emargination of labrum, enlarged f, hypopharynx; g, labium, dorsal (left) and ventral views; h, left mandible, ventral view: i, leli incioors and provthesa, enlarged: j, right mandible, ventral view; k, right incisors and prostheca enlarged; 1 , right maxilla, ventral

FIG. 5. Atalophtehia auratus: a-l, male imago: a, fore wing; b, hind wing; c, genitalia, ventral view; d, gentalia, lateral view; c , thoracic sterna; f, dorsal colour pattern; g, ventral abdominal colour pattern; h, fore claw. $i-j$, female imago: i, abdominal segnents $7-10$, ventral view; j, abdominal segments 7-10, lateral view. Scale lines: a-g, i, j, 1 mm ; $\mathrm{h}, 0.1 \mathrm{~mm}$.

1:1G. 6. Atalophlehia auratus, mature nymph: a, fore leg; b, fore claw; c, labrum, dorsal view; d, antero-median emargination of labrum, enlarged; e, hypopharnyx; f, labium, dorsal (left) and ventral views; g, left mandible, ventral view; h, left incisors and prostleca, enlarged; i, right mandible, ventral view; j, right incisors and prostheca, enlarged; k, left maxilla, ventral view. Scale lines: a, c, e, i. g, i, $k, 0.5 \mathrm{~mm} ; \mathrm{b}, \mathrm{d}, \mathrm{h}, \mathrm{j}, 0.1 \mathrm{~mm}$.

FIG. 7. SEM micrographs of genitalia of Atalophlebia male imagos. a-b, Atalophlebia australis: a, genitalia, ventral view; b, penes, ventral view, enlarged. c-d, Atalophlebia australasica: c, genitalia, ventral view; d, penes, ventral view, enlarged. e-f, Atalophlebia auratus: e, genitalia, ventral view; f, penes, ventral view, enlarged. Scale lines: $100 \mu \mathrm{~m}$.

FIG. 8. Nousia inconspicua. $a-d$, male imago: a, fore wing; b, hind wing; c, genitalia, ventral view; d, genitalia, lateral view, c - f, female imago: e, abdominal segment 10 , ventral view; f, abdominal segments $7-10$, lateral view, g - i, male imago: g, fore claws; h, dorsal abdominal colour pattern; i, ventral abdominal colour pattern. Scale lines: $a, h, i, 1 \mathrm{~mm} ; \mathrm{b}-\mathrm{f}, 0.5 \mathrm{~mm} ; \mathrm{g}, 0.05 \mathrm{~mm}$.

116. 9. Nousid inconspicua, mature nymph: a, fore leg; b, fore claw; c, third abdominal gill; d, labrum, dorsal view; e, antero-median emargination of labrum, enlarged; f, hypopharynx; 2 , labium, dorsal (left) and ventral views; h, left mandible, ventral view; i, kef incisors and prostheca, enlarged; j, right mandible, vental view; k, right incisors and prostheca, enlarged; I. Ieft maxilla, ventral view. Scale lines: a, $c, 0.5 \mathrm{~mm} ; \mathrm{b}, \mathrm{d}, \mathrm{f}, \mathrm{g}, \mathrm{h}, \mathrm{j}, \mathrm{l}, 0.1 \mathrm{~mm}, \mathrm{c}, \mathrm{i}, \mathrm{k}, 0.05 \mathrm{~mm}$.

171G. 10. Nousia fuscula. a-d, male imago: a, fore wing; b, hind wing; c, genitalia, ventral view; d, genitalia, lateral view. $\mathrm{c}-\mathrm{f}$, female imago: e, ventral view of abdominal segment 10; f, abdominal segments 6-10, lateral view. g-j, male imago: g, fore claws; h, dorsal abdominal colour pattern; i, ventral abdominal colour pattern; j, penes enlarged, ventral view. Scale lines: $a, h, i, 1 \mathrm{~mm}$; $b, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, 0.5 \mathrm{~mm}$ j, 0.1 mm ; g, 0.05 mm .

FlG. I1. Nousio fuscula, mature nymph: \mathbf{a}, fore leg; \mathbf{b}, fore claw; c, third abdominal gill; d, labrum, dorsal view; \mathbf{e}, antero-median emargination of labrum, enlarged; f, hypopharynx; g, labium, dorsal (left) and ventral views; h, left mandible, ventral view; i, left incisors and prostheca, enlarged; \mathfrak{j}, right mandible, ventral view; k, right incisors and prostheca, enlarged; l, left maxilla, vential view. Scale lines: $\mathrm{a}, \mathrm{c}, 0.5 \mathrm{~mm} ; \mathrm{b}, \mathrm{d}, \mathrm{f}, \mathrm{g}, \mathrm{h}, \mathrm{j}, \mathrm{l}, 0.1 \mathrm{~mm} ; \mathrm{c}, \mathrm{i}, \mathrm{k}, 0.05 \mathrm{~mm}$.

FIG. 12. Nousia pilosa a-h, male imago: a, fore wing; b, hind wing; c, left hind wing, enlarged; d, genitalia, ventral view; e, genitalia, lateral view; f, fore claws; g, dorsal abdominal colour pattern; h, ventral abdominal colour pattern. Scale lines: $a, b, g, h, 1 \mathrm{~mm}$; $\mathrm{c}-\mathrm{e}, 0.5 \mathrm{~mm} ; \mathrm{f}, 0.1 \mathrm{~mm}$.

F1G. 13. Nousia pilosa, mature nymph: a, fore leg; b, fore claw; c , third abdominal gill; d, labrum, dorsal view; e, antero-median emargination of labrum, enlarged; f, hypopharynx; g, labium, dorsal (left) and ventral views; h, lelt mandible, ventral view; i, lelt incisors and prostheca, enlarged; i^{\prime}, left prostheca, enlarged; j, right mandible, ventral view; k, right incisors and prostheca, enlarged; k, right prostheca, enlarged; 1 , left maxilla, ventral view. Scale lines: $a, ~ c, d, l, g, h, j, l, 0.5 \mathrm{~mm} ; \mathrm{b}, \mathrm{e}, \mathrm{i}, \mathrm{k}, 0.1 \mathrm{~mm} ; \mathrm{i}, \mathrm{k}, 0.05 \mathrm{~mm}$.

FIC. 14. Dorsal colour paterns of Atalophtehia and Nousia mature nymphs. a, Atahophtebia austrulis; b, Atahophlebia australasica; s, Alatophlehia abrahus; d, Nomsia inconspicora; e, Nonsia fuscula; f, Nonsia pilosa. Scale lines: 1 mom.

FIG. 15. SEM micrographs of genitalia of Nousia male imagos. a-b, Nousia inconspicua: a, genitalia, ventral vicw; b, penes, ventral view, enlarged. c-d, Nousia fuscula: c, genitalia, ventral view; d, penes, ventral view, enlarged. e-f, Nousia pilosa: e, penes, ventral view, enlarged; f, genitalia, ventral view. Scale lines: $a, c, f, 100 \mu \mathrm{~m} ; \mathrm{b}, \mathrm{d}, \mathrm{e}, 10 \mu \mathrm{~m}$.

b

FIG. 16. SEM micrographs of eggs of a, Nousia inconspicua; and b, Nousia fuscula, illustrating the general similarity of morphology, but distinct polar caps of each species. Scale line: $10 \mu \mathrm{~m}$.

d

g

15G. 18. Ubmerophlebia pipinna, mature nymph: a, fore leg; b, fore tha; c, third abdominal gill; d, labrum, dorsal view; e, antero-median emarymation of habrm, enlaged, f, hypopharynx: g. labium, dorsal (left) and ventral views; h, left mandible, ventral view: i, left incisors and prostheca, enlarged and prostheca, enlarged; j, right mandible, ventral view; h, tight incisors and prostheea, enlarged

FIG. 19. SEM micrographs of some Australian mayflies. a-b, Ulmerophlebia pipinna: a, genitalia, ventral view; b, enlarged ventral view of penes. c-e, ventral view of genitalia of c, Baetis soror; d, Centroptilum elongatum; e, Cloeon fluviatile; f, Cloeon paradieniensis. Scale lines: $100 \mu \mathrm{~m}$.

Fig. 20. Dorsal colour pattern of mature female nymph of Uhmerophlebia pipinna. Scale line: 1 mm

FIG. 21. Baetis soror: a-d, male imago: a, fore wing: b, hind wing; c, dorsal colour pattern; d, genitalia, ventral view. ear, mature nymph: c, dorsal colour pattern; f, fore leg; fore claw; h, paraprocts, ventral view; i, third abdominal gill; i, margin of gill, enlarged; j labrum, dorsal view: k, antero-median emargination of labrum, entarged; 1 , left maxilla, ventral view; m, labium, dorsal (left) and ventral views; n, left mandible, ventral view; o, left incisors and prostheca, enlarged; p, right mandible, ventral view; q, right incisors and prostheca, enlarged; r, hypopharynx. Scale lines: $a, b, c, c, 1 \mathrm{~mm} ; \mathrm{d}, \mathrm{f}, \mathrm{i}, 0.5 \mathrm{~mm}, \mathrm{~g}, \mathrm{~h}, \mathrm{i}, \mathrm{j}-\mathrm{r}, 0.1 \mathrm{~mm}$.

P'ICi. 22. SEM micrographs of the paraprocts of nympls of Buetis soror (a, b); Centroptilum elonedum (c, d) and Tasmanophlebia sp. (c. 1). Scale Jines: 100 gm .

1FIG. 23. Centroptifum elongatum. a-e, male imago: a, fore wing; b, hind wing; c, dorsal colour pattern; d, genitalia, ventral view; e, thoracic sterna. f, mature nymph; dorsal colour pattern. Scale lines: a, b, c, e, f, 1 mm; d, 0.5 nm .

F1G. 24. Centroptilum elongatum, mature nymph: a, fore leg; b, paraprocts, ventral view; c, paraprocts, enlarged; d, third abdominal gill; c, labrum, dorsal view; f, antero-median emargination ol labrum, enlarged; g, labium, dorsal (left) and ventral views; h, hypopharynx; i, left mandible, ventral view; j, left incisors and prostheca, enlarged; k, fight mandible, ventral view; l, right incisors and prostheca, enlarged; m, right maxilla, ventral view. Scale lines: $a, b, d, 0.5 \mathrm{~mm} ; \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{l}, \mathrm{g}, \mathrm{h}, \mathrm{i}, \mathrm{k}, \mathrm{m}, 0.1 \mathrm{~mm} ; j, \mathrm{l}, 0.05 \mathrm{~mm}$.

1C. 25. C/oeon fluviatle a-f, male imago: a, fore wing; b, dorsal colour pattern; c, thoracic sterma; d, genitalia, ventral view; c, genitalia, dorsal view; f, genitalia, lateral view. Cloeon paradienionsis. g-k, male imago: g, fore wing; h, dorsal colour pattern; i, genitalia, ventral view, j, genitalia, lateral view; k, genitalia, clorsal view. Scale lines: $a, b, c, g-k, 1$ min; $d, c, f, 0.5 \mathrm{~mm}$,

h

FIG. 26. Cloeon fluviatile, mature nymph: a, fore leg; b, fore claw; c, dorsal abdominal colour pattern; d, paraprocts; e, third abduminal gill; f, labrum, dorsal view; g, antero-median emargination of labrum; h, labium, dorsal (left) and ventral views; i, left maxilla, ventral view; j, lell mandible, ventral view; k, left prostheca, enlarged; l, right mandible, ventral view; m, left prostheca, enlarged; n, hypopharynx. Scale lines: c, 1 mm ; $a, e, 0.5 \mathrm{~mm} ; \mathrm{b}, \mathrm{d}, \mathrm{f}-\mathrm{j}, 1, \mathrm{n}, 0.1 \mathrm{~mm} ; \mathrm{k}, \mathrm{m}, 0.05 \mathrm{~mm}$

FIG. 27. Cloeon parudieniensis, mature nympl: a, fore leg; b, paraprocts; c, labrum, dorsal view; d, antero-median emargination of labrum; e, hird abdominal gill; f, right maxilla, ventral view, with enlarged apex of terminal segment of the palp; g, hypopharynx; h, labium, dorsal (left) and ventral views; i, left mandible, ventral view; j, left incisors and prostheca, enlarged; k, right mandible, ventral view; l , right incisors and prostheea, enlarged. Scale lines: $\mathrm{a}, \mathrm{e}, 0.5 \mathrm{~mm} ; \mathrm{b}-\mathrm{d}, \mathrm{f}-\mathrm{i}, \mathrm{k}, 0.1 \mathrm{~mm} ; \mathrm{j}, \mathrm{l}, 0.05 \mathrm{~mm}$.

FIG. 28. Tasmanophtebia sp. a-f, male imago: a, fore wing; b, hind wing; c, dorsal abdominal colour pattern; d, genitalia, ventral view; e, genitalia, lateral view; f, fore claws. g, mature nymph: dorsal colour pattern. Scale lines. a-e, $g, 1 \mathrm{~mm} ; 1,0.1 \mathrm{~mm}$.

FIG. 29. Tasmanophlehia sp. mature nymph: a, fore leg; b, first abdominal gill; c, second abdominal gill; d, third abdominal gill; c, fourth abelominal gill; f, labrum, dorsal view; g, antero-median emargination, enlarged; h, labium, dorsal (lelt) and ventral view; i, hypopharynx; j, left maxilla, ventral view; k, leit mandible, ventral view; l, left ineisors and prostheca, enlarged; m, right mandible, ventral vien; n , right incisors and prostheca, enlarged. Scale lines; b-e, $1 \mathrm{~mm} ; \mathrm{a}, \mathrm{f}, \mathrm{h}-\mathrm{k}, \mathrm{m}, 0.5 \mathrm{~mm} ; \mathrm{g}, \mathrm{l}, \mathrm{n}, 0.1 \mathrm{~mm}$.

FIG. 30. SEM micrographs of Tasmanophlebia sp. and Tasmanocoenis tillyardi. Tasmanophlebia sp. a, b, genitalia of male imago, ventral views. Tasmanocoenis tillyardi c, genitalia of male imago, ventral view; d, second gill of mature nymph. Scale lines: 100 m

FIG. 31. Tasmanocoenis tillyardi a-d, malc imago: a, fore wing; b, dorsal colour pattern; e, thoracic sterna; d, genitalia, ventral view. e, mature nymph: dorsal colour pattern. Scale lines: a-c, e, 1 mm ; $\mathrm{d}, 0.1 \mathrm{~mm}$.

FIC. 32. Tasmanocoenis tillyardi, mature nymph: a, fore leg: b, first abdominal gill; e, second abdominal gilf; d, third abdominal gill; e, basal antenal segments; f, labrum, dorsal view; g, antero-median emargination of labrum, enlarged; h, labium, dorsal (left) and ventral views; i, hypopharyox; j, left mandible, ventral view; k, left incisors and prostheca, enlarged; 1 , right mandible, ventral view; m , right incisors and prostheca, enlarged; n , left maxilla, ventral view. Scale lines: a-e, $0.5 \mathrm{~m} / \mathrm{n} ; \mathrm{f}-\mathrm{n}, 0.1 \mathrm{~mm}$.

[^0]: ${ }^{1}$ Present address: State Water Laboratory, Engineering and Water Suppty Department, Private Mail Bug, Satisbury Post Oflice South Australia 5108

